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Abstract. In 2017, Lienert and Tumulka proved Born’s rule on arbitrary
Cauchy surfaces in Minkowski space-time assuming Born’s rule and a cor-
responding collapse rule on horizontal surfaces relative to a fixed Lorentz
frame, as well as a given unitary time evolution between any two Cauchy
surfaces, satisfying that there is no interaction faster than light and no
propagation faster than light. Here, we prove Born’s rule on arbitrary
Cauchy surfaces from a different, but equally reasonable, set of assump-
tions. The conclusion is that if detectors are placed along any Cauchy sur-
face Σ, then the observed particle configuration on Σ is a random variable
with distribution density |ΨΣ|2, suitably understood. The main different
assumption is that the Born and collapse rules hold on any spacelike hy-
perplane, i.e., at any time coordinate in any Lorentz frame. Heuristically,
this follows if the dynamics of the detectors is Lorentz invariant.
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1. Introduction

In its usual form, Born’s rule asserts that if we measure the positions of all par-
ticles of a quantum system at time t, the observed configuration has probability
distribution with density |Ψt|2. One would expect that Born’s rule also holds
on arbitrary Cauchy surfaces1 Σ in Minkowski space-time M in the following
sense: If we place detectors along Σ, then the observed particle configuration
has probability distribution with density |ΨΣ|2, suitably understood. We call
the latter statement the curved Born rule; it contains the former statement as
a special case in which Σ is a horizontal 3-plane in the chosen Lorentz frame.
We prove here the curved Born rule as a theorem; more precisely, we prove
that the Born rule holds on arbitrary Cauchy surfaces assuming (i) that the
Born rule holds on hyperplanes, i.e., on flat surfaces (flat Born rule), (ii) that
the collapse rule holds on hyperplanes (flat collapse rule), (iii) that the unitary
time evolution contains no interaction terms between spacelike separated re-
gions (interaction locality), and (iv) that wave functions do not spread faster
than light (propagation locality). A similar theorem was proved by Lienert
and Tumulka in [24]. As we will discuss in more detail in Sect. 1.2, the central
difference is that the detection process was modeled in a different way; our
model of the detection process is in a way more natural and leads to a simpler
proof of the theorem.

This paper is structured as follows. In the remainder of Sect. 1, we de-
scribe our results. In Sect. 2, we provide technical details of the concepts used.
In Sect. 3, we derive the Born rule on triangular surfaces. In Sect. 4, we prove
our statements about approximating Cauchy surfaces with triangular surfaces.
In Sect. 5, we provide the proof of our main theorem.

1.1. Hypersurface Evolution

In order to formulate the curved Born rule, we need to have a mathematical
object ΨΣ available that represents the quantum state on Σ. To this end, we
regard as given a hypersurface evolution (precise definition given in Sect. 2
or [24]) that provides a Hilbert space HΣ for every Cauchy surface Σ and a
unitary isomorphism UΣ′

Σ : HΣ → HΣ′ representing the evolution between any
two Cauchy surfaces, ΨΣ′ = UΣ′

Σ ΨΣ. The situation is similar in spirit to the
Tomonaga–Schwinger approach [33,34,36], although Tomonaga and Schwinger
used the interaction picture for identifying all HΣ with each other.

1We use the definition that a Cauchy surface [38] is a subset of space-time intersected by every
inextendible causal (i.e., timelike-or-lightlike) curve in exactly one point. Thus, a Cauchy
surface can have lightlike tangent vectors but cannot contain a lightlike line segment.
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We take the detected particle configuration on Σ to be an element of the
unordered configuration space of a variable number of particles,

Γ(Σ) := {q ⊂ Σ : #q < ∞} , (1)

the set of all finite subsets of Σ. (If more than one, say m ∈ N, species of
particles are present, one may either, by straightforward generalization of
our results, consider Γ(Σ)m as the configuration space or apply the mapping
Γ(Σ)m → Γ(Σ) : (q1, . . . , qm) �→ q1 ∪ . . .∪ qm that erases the species labels and
still consider probability distributions on Γ(Σ), as we will do here.)

It will be convenient to write the |ΨΣ|2 distribution (the curved Born
distribution) in the form of the measure 〈ΨΣ|PΣ(·)|ΨΣ〉 = ‖PΣ(·)ΨΣ‖2, where
PΣ is the appropriate projection-valued measure (PVM) on2 Γ(Σ) acting on
HΣ. That is, if ΨΣ can be regarded as a function on Γ(Σ), then, for any
S ⊆ Γ(Σ), PΣ(S) is the multiplication by the characteristic function of S and

∥
∥PΣ(S)ΨΣ

∥
∥

2 =
∫

S

dq |ΨΣ(q)|2 (2)

with dq the appropriate volume measure on Γ(Σ). But we do not have to regard
ΨΣ as a function, we can treat it abstractly as a vector in the given Hilbert
space HΣ. The PVM PΣ is automatically given if the HΣ are Fock spaces or
tensor products thereof.

Another way of putting the curved Born rule (although perhaps not fully
equivalent with regard to a curved collapse rule, see Remark 3 in Sect. 1.4)
is to say that PΣ is the configuration observable on Σ. So, our theorem could
be summarized as showing that if PE is the configuration observable on every
hyperplane E, then PΣ is the configuration observable on every Cauchy surface
Σ, provided interaction locality (IL) and propagation locality (PL) hold.

A hypersurface evolution is specified by specifying the HΣ’s, the UΣ′
Σ ’s,

and the PΣ’s; we denote it by (H◦, U◦
◦ , P◦) with ◦ a placeholder for Cauchy

surfaces. Some examples are described in [24] and in Remark 10 in Sect. 2.2;
they arise especially from multi-time wave functions [9,11,25,33]; see [23] for
an introduction and overview. While certain ways of implementing an ultravi-
olet cutoff [7,26] lead to multi-time wave functions that cannot be evaluated
on arbitrary Cauchy surfaces, models without cutoff define a hypersurface evo-
lution, either on the non-rigorous [28,29] or on the rigorous level [6,19–22]. As
a consequence, our result proves in particular a Born rule for multi-time wave
functions, thereby generalizing a result of Bloch [4] (see also Remark 4 in [24]).

We do not, as one would in quantum electrodynamics or quantum chro-
modynamics, exclude states of negative energy; it remains for future work to
extend our result in this direction.

1.2. Previous Result

A theorem similar to ours has been proved by Lienert and Tumulka [24]; our
result differs in what exactly is assumed, and how the detection process is

2We use the Borel σ-algebra on M, Σ, Γ(Σ) [24] etc.; when speaking of subsets, we always
mean Borel measurable subsets.
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(a) (b)

Figure 1. a Our detection process is based on approximating
a curved surface Σ by a piecewise flat surface. b The detection
process used by Lienert and Tumulka is based on approximat-
ing a curved surface Σ by disconnected pieces of horizontal
surfaces. We have set the speed of light to c = 1. Color online

modeled. The fact that the curved Born rule can be obtained through different
models of the detection process and from different sets of assumptions suggests
that it is a robust consequence of the flat Born rule.

In fact, our result was already conjectured by Lienert and Tumulka, who
also suggested the essentials of the model of the detection process we use here,
although their theorem concerned a different model. The biggest difference
between their theorem and ours is that we assume the Born rule and collapse
rule to hold on tilted hyperplanes, whereas Lienert and Tumulka assumed them
only on horizontal hyperplanes in a fixed Lorentz frame.

Our model of the detection process is perhaps more natural than the one
at the basis of Lienert and Tumulka’s theorem, as it approximates detectors
on tilted surfaces through detectors on tilted hyperplanes, rather than on nu-
merous small pieces of horizontal hyperplanes. On the other hand, the result
of Lienert and Tumulka is stronger than ours in that it assumes the Born rule
only on horizontal hyperplanes (“horizontal Born rule”) and not on all tilted
spacelike hyperplanes (“flat Born rule”). Then again, our model allows for a
somewhat simpler proof compared to that of Lienert and Tumulka, and the as-
sumption of the Born and collapse rules on tilted hyperplanes seems natural if
the workings of detectors are Lorentz invariant. Yet, our proof does not require
the Lorentz invariance of the hypersurface evolution of the observed system
(see also Remark 13 in Sect. 2.2); in particular, the hypersurface evolution
may involve external fields that break the Lorentz symmetry.

Other works in recent years dealing with a physical analysis of the quan-
tum measurement process include [1,12–14].

1.3. Detection Process

Our definition of the detection process is based on approximating any given
Cauchy surface Σ by spacelike surfaces Υ that are piecewise flat, and whose
(countably many) flat pieces are 3d (non-regular) tetrahedra. We call such sur-
faces triangular surfaces; see Fig. 2. While the precise definition of a triangular
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Figure 2. Part of a triangular surface Υ in 1 + 2 dim. Color
online

Figure 3. A sequence of triangular surfaces Υn converging
increasingly and uniformly to Σ in 1 + 1 dim. Color online

surface will be postponed to Sect. 2, it may be useful to formulate already here
a basic fact that we will prove in Sect. 4:

Proposition 1. For every Cauchy surface Σ in Minkowski space-time, there is
a sequence (Υn)n∈N of triangular Cauchy surfaces that converges increasingly
and uniformly to Σ.

Here, “increasing” means that3 Υn+1 ⊆ future(Υn) for all n; see Fig. 3.
Uniform convergence in a given Lorentz frame means that for every ε > 0,
all but finitely many Υn lie in {x + (s, 0, 0, 0) : x ∈ Σ, |s| < ε}; equivalently,
since Σ is the graph of a function f : R3 → R and Υn the graph of a function

3In this paper, the “future” of a set R in space-time means the causal future, often denoted
J+(R) [27], as opposed to the timelike future I+(R); note that R ⊆ J+(R); likewise for the
“past.”
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Figure 4. The sets ∅(·),∃(·) and ∀(·) on the 2-particle sector
of configuration space, visualized. Color online

fn : R3 → R, uniform convergence Υn → Σ means that fn converges uniformly
to f . It turns out that this notion is Lorentz invariant:

Proposition 2. If a sequence (Σn)n∈N of Cauchy surfaces converges uniformly
to a Cauchy surface Σ in one Lorentz frame, then also in every other.

Again, the proof is given in Sect. 4. The following notation will be con-
venient: for any subset A ⊆ Σ, let

∅(A) := {q ∈ Γ(Σ) : q ∩ A = ∅}
∃(A) := {q ∈ Γ(Σ) : q ∩ A �= ∅}
∀(A) := {q ∈ Γ(Σ) : q ⊆ A}

(3)

be the sets of configurations with no, at least one, or all particles in A (see
Fig. 4). Note that ∃(A)c = ∅(A) = ∀(Ac), where Ac means the complement of
A with respect to Σ. We also briefly write ∀A for ∀(A), and similarly ∃A and
∅A.

We define the detection distribution on Σ as the limit of the detection
distributions on the Υn, and we show in Theorem 1 that this limit exists
and agrees with |ΨΣ|2. But to this end, we first need to talk about detection
probabilities on triangular surfaces Υ.

So let Δk be the open and disjoint tetrahedra such that

Υ =
⋃

k∈K

Δk (4)

(the bar denotes closure, K is a countably infinite index set). We want to
consider a detector in a bounded region B ⊂ Υ that yields outcome 1 if there
is at least one particle in B and outcome 0 if there is no particle in B. To this
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end, we imagine several smaller detectors, one in each region Bk := B ∩ Δk,
and set the B-outcome equal to 1 whenever any of the small detectors clicked.
Now each region Bk, being a subset of Δk, lies in some hyperplane Ek, and on
hyperplanes we assume the Born rule and collapse rule:
Flat Born rule. If on the hyperplane E the state vector is ΨE ∈ HE with
‖ΨE‖ = 1, and a detection is attempted in the region B ⊆ E, then the probabil-
ity of outcome 1 is ‖PE(∃(B))ΨE‖2 and that of outcome 0 is ‖PE(∃(B)c)ΨE‖2.
Flat collapse rule. If the outcome is 1, then the collapsed wave function is

Ψ′
E =

PE(∃(B))ΨE

‖PE(∃(B))ΨE‖ , (5)

otherwise

Ψ′
E =

PE(∃(B)c)ΨE

‖PE(∃(B)c)ΨE‖ . (6)

There are two natural possibilities for defining the detection probabilities
on Υ in terms of those on Ek: the sequential detection process and the parallel
detection process. According to the sequential detection process, we choose
an arbitrary ordering of the set K indexing the tetrahedra or hyperplanes
and carry out, in this order, a quantum measurement in each Ek represent-
ing the detection attempt in Bk including appropriate collapse and then use
the unitary evolution U

Ek+1
Ek

to evolve to the next hyperplane in the chosen
order, here written as Ek+1. For the parallel detection process, consider the
projection operators PEk

(∃(Bk)) associated with attempted detection in Bk;
we show that they, after being transferred to HΥ by means of UΥ

Ek
, commute

with each other if interaction locality holds, so they can be “measured simulta-
neously.” The simultaneous quantum measurement of these projections in HΥ

provides the parallel detection process for B ⊂ Υ with outcome 1 whenever
any of the quantum measurements yielded 1. It turns out that the sequential
and the parallel process agree with each other and with the Born rule on Υ:

Proposition 3. Fix a hypersurface evolution satisfying interaction locality (IL)
(Definition 6), a triangular Cauchy surface Υ, a bounded subset B ⊂ Υ, and
a normalized quantum state Ψ, and assume the flat Born rule and the flat
collapse rule. The sequential detection process in any order of the tetrahedra of
Υ yields the same detection probability, called P

Ψ
B; it agrees with the one given

by the curved Born distribution on Υ, which is ‖PΥ(∃(B))ΨΥ‖2. Moreover,
the parallel detection process also yields the same detection probability.

Proposition 3 will follow as a direct consequence of Proposition 5 in
Sect. 3.

Actually, for either a triangular surface Υ or a general Cauchy surface Σ,
we want more than just to detect for a subset B whether there is a particle
in B. We want to allow the use of several detectors, each covering a region
P1, . . . , Pr ⊂ Σ; the outcome of the experiment is L = (L1, . . . , Lr) with L� = 1
if a particle gets detected in P� and L� = 0 otherwise. It seems physically
reasonable that the region covered by a detector is bounded and has boundary
of measure zero.
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Definition 1. An admissible partition P = (P1, . . . , Pr) of Σ is defined by
choosing finitely many subsets P� of Σ that are mutually disjoint, P� ∩Pm = ∅
for � �= m, and such that each P� is bounded and has boundary in Σ of
(invariant) 3-volume 0. Here, the term bounded refers to the Euclidean norm
on R

4. We set Pr+1 = Σ \ (P1 ∪ . . . ∪ Pr) to make (P1, . . . , Pr+1) a partition of
Σ.

The idea is that there is no detector in Pr+1. Let MP (L) denote the set
of configurations in Γ(Σ) such that, for each � = 1, . . . , r, there is no point in
P� if L� = 0 and at least one point in P� if L� = 1; that is, MP (L) is the set
of configurations compatible with outcome L.

Now the definition of detection probabilities on a triangular surface Υ can
straightforwardly be generalized from a bounded set B ⊂ Υ to an admissible
partition P = (P1, . . . , Pr) of Υ in both the sequential and the parallel sense,
and we find:

Proposition 4. Fix a hypersurface evolution satisfying interaction locality, a
triangular Cauchy surface Υ, an admissible partition P = (P1, . . . , Pr) of Υ,
and a normalized quantum state Ψ, and assume the flat Born rule and the
flat collapse rule. The joint distribution P

Ψ
P (L) of L = (L1, . . . , Lr) according

to the sequential detection process in any order of the tetrahedra of Υ and
according to the parallel detection process agree with each other and with the
one given by the curved Born distribution on Υ, which is ‖PΥ(MP (L))ΨΥ‖2.

Proposition 4 can be regarded as a statement of the Born rule on trian-
gular surfaces. It follows from Proposition 5, which is proven in Sect. 3.

1.4. Main Result

Before we elucidate the result, let us briefly introduce some more terminology.

Definition 2. Let Σ,Σ′ be Cauchy surfaces and A ⊆ Σ. We then define the
grown set of A in Σ′ as (see Fig. 5)

Gr(A,Σ′) = [future(A) ∪ past(A)] ∩ Σ′. (7)

Similarly, we define the shrunk set of A in Σ′ as:

Sr(A,Σ′) = {x′ ∈ Σ′ : Gr({x′},Σ) ⊆ A}. (8)

The following aspect of our result requires some explanation: once we
have a triangular surface Υ approximating a given Cauchy surface Σ, and
once we are given an admissible partition P = (P1, . . . , Pr) on Σ, we want to
approximate the sets P� ⊂ Σ by sets B� in Υ. One may think of two natural
possibilities of defining B�: (i) project P� downwards along the direction of the
x0 axis of a chosen Lorentz frame; or (ii) take B� = Sr(P�,Υ), the smallest set
on Υ that in some sense corresponds to P�. Our result holds in both variants;
we formulate it in variant (i) (see Remark 5 in Sect. 5 about (ii)). That is,
choose a Lorentz frame and let

π : R4 → R
3, π(x0, x1, x2, x3) := (x1, x2, x3) (9)
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Figure 5. Grown and shrunk sets of A ⊂ Σ. Color online

be the projection to the space coordinates. It is known [27, p. 417] that the
restriction πΣ of the projection π to Σ is a homeomorphism Σ → R

3; thus,
πΥ

Σ := π−1
Υ ◦ πΣ is a homeomorphism Σ → Υ. We set

B� := πΥ
Σ (P�). (10)

Of course, since we prove that the limiting probability distribution on Γ(Σ) is
given by the curved Born distribution, the limiting probability distribution is
independent of the choice of Lorentz frame used for defining πΥ

Σ .
We can now state our main result.

Theorem 1. Let Σ be a Cauchy surface in Minkowski space-time M and (Υn)n∈N

a sequence of triangular Cauchy surfaces that converges increasingly and uni-
formly to Σ. Let E = (H◦, P◦, U◦

◦ ) be a hypersurface evolution satisfying prop-
agation locality and Ψ0 ∈ HΣ0 with ‖Ψ0‖ = 1 for some Σ0 in the past of Σ.
Then for any admissible partition P of Σ, Bn :=

(

πΥn

Σ (P1), . . . , πΥn

Σ (Pr)
)

is
an admissible partition of Υn, and

lim
n→∞

∥
∥
∥PΥn

(MBn
(L))UΥn

Σ0
Ψ0

∥
∥
∥

2

=
∥
∥
∥PΣ(MP (L))UΣ

Σ0
Ψ0

∥
∥
∥

2

(11)

for all L ∈ {0, 1}r.

Together with Proposition 4, we obtain:

Corollary 1. Assume the hypotheses of Theorem 1 together with the flat Born
rule, the flat collapse rule, and interaction locality. Define the detection prob-
abilities for P on Σ as the limit of the detection probabilities for Bn on Υn

and the latter through either the sequential or the parallel detection process.
Then the detection probabilities for P on Σ are given by the curved Born rule,
∥
∥PΣ(MP (L))ΨΣ

∥
∥

2 for all L ∈ {0, 1}r.

The proof of Theorem 1 (see Sect. 5) makes no special use of dimension
3 + 1 and applies equally in dimension d + 1 for any d ∈ N; tetrahedra then
need to be replaced by d-dimensional simplices.

Remark. 1. Shrunk set Sr(A,Σ′) Definition (8) is equivalent to saying that
the shrunk set is the intersection of Σ′ and the domain of dependence of
Σ.
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2. Uniqueness of the measure on Γ(Σ) It was shown in Proposition 3 in
Section 6 of [24] that if two probability measures μ, μ′ on Γ(Σ) agree on
all detection outcomes, μ(MP (L)) = μ′(MP (L)) for every L ∈ {0, 1}r

and every admissible partition P of Σ, then μ = μ′. Thus, the whole
|ΨΣ|2 distribution is uniquely determined by the detection probabilities.

In fact, a probability measure μ on Γ(Σ) is already uniquely deter-
mined by the values μ(∅(A)), where A runs through those subsets of Σ
whose projection π(A) to R

3 is a union of finitely many open balls (see
the proof of Proposition 3 in [24]). This fact might suggest that, in or-
der to prove the curved Born rule, it would have been sufficient to prove
the statement of Theorem 1 only for a single detector (i.e., for partitions
with r = 1 consisting of P1 = A and Pr+1 = Σ \ A) in a region A of the
type described. However, we prove the stronger statement for arbitrary
r because it is not obvious that the detection probabilities for arbitrary
r fit together to form a measure on Γ(Σ) (in other words, that detection
probabilities for r > 1 will agree with the Born distribution, given that
detection probabilities for r = 1 do).

3. Curved collapse rule One can also consider a curved collapse rule: Sup-
pose that r detectors are placed along Σ, that each detector (say the �-th)
only measures whether there is a particle in the region P�,where P =
(P1, . . . , Pr) is an admissible partition, and that each detector acts im-
mediately (i.e., is infinitely fast). If the outcome was L = (L1, . . . , Lr) ∈
{0, 1}r,then the wave function immediately after detection is the collapsed
wave function

Ψ′
Σ =

PΣ(MP (L))ΨΣ

‖PΣ(MP (L))ΨΣ‖ . (12)

There is a sense in which the curved collapse rule also follows from
our result and a sense in which it does not. To begin with the latter, our
justification of the Born rule on triangular surfaces was based on the idea
that on each tetrahedron Δk, we apply a detector to Bk� = Δk ∩ B� and
deduce from the outcomes whether a particle has been detected anywhere
in B�. This detection process measures more than whether there is a
particle in B�, as it also measures which of the Bk� contain particles; as a
consequence, this detection process would collapse Ψ more narrowly than
(12).

However, if we assume that on triangular surfaces Υ we can have
detectors that only measure whether there is a particle in B� for an
admissible partition B = (B1, . . . , Br), so that the collapse rule (12) holds
upon replacing Σ → Υ and P → B, then sufficient approximation of an
arbitrary Cauchy surface Σ by triangular surfaces leads to a collapsed
wave function arbitrarily close to (12). Indeed, we have that (see Sect. 5
for the proof)

Corollary 2. Under the hypotheses of Theorem 1,

UΣ
Υn

PΥn
(MBn

(L))UΥn

Σ
n→∞−−−−→ PΣ(MP (L)) strongly. (13)
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4. Other observables As the curved Born rule shows, the PVM PΣ can be
regarded as the totality of position observables on Σ. What about other
observables? In a sense, all other observables are indirectly determined
by the position observable. As Bell [3, p. 166] wrote:

[I]n physics, the only observations we must consider are posi-
tion observation, if only the positions of instrument pointers.
[. . . ] If you make axioms, rather than definitions and theorems,
about the ‘measurements’ of anything else, then you commit
redundancy and risk inconsistency.

A detailed description of how self-adjoint obervables arise from the Hamil-
tonian of an experiment, the quantum state of the measuring apparatus,
and the position observable (of its pointer), can be found in [12, Sect. 2.7].
A conclusion we draw is that specifying a quantum theory’s hypersurface
evolution is an informationally complete description.

As another conclusion, the PVM PΣ serves not only for representing
detectors. When we want to argue that certain experiments are quantum
measurements of certain observables, we may use it to link the quantum
state with macro-configurations (say, of pointer positions), and in fact to
obtain probabilities for pointer positions.

A related but quite different question is how the algebras of local
operators common in algebraic QFT (such as smeared field operator al-
gebras or Weyl algebras) are related to PΣ. It would be a topic of interest
for future work to make this relation explicit.

Coming back to the Bell quote, one may also note that for the same
reason, making the curved Born rule an axiom in addition to the flat
Born rule means to commit redundancy and to risk inconsistency. That
is why we have made the curved Born rule a theorem.

Of course, we have still committed a little bit of the redundancy that
Bell talked about by assuming the Born and collapse rules on all spacelike
hyperplanes while it suffices to assume them on horizontal hyperplanes
[24].

5. Objections Some authors [37] have criticized the very idea of evolving
states from one Cauchy surface to another on the grounds that such an
evolution cannot be unitarily implemented for the free second-quantized
scalar Klein–Gordon field. It seems to us that these difficulties do not in-
validate the approach but stem from analogous difficulties with 1-particle
Klein–Gordon wave functions, which are known to lack a covariantly-
defined timelike probability current 4-vector field that could be used for
defining a Lorentz-invariant inner product that makes the time evolu-
tion unitary (e.g., [33]). In contrast, a hypersurface evolution accord-
ing to our definition can indeed be defined for the free second-quantized
Dirac equation allowing negative energies [5,8,10,24]. Other results ([35,
Sect. 1.8], [17,18]) may raise doubts about propagation locality; on the
other hand, these results presuppose positive energy, which we do not
require here; moreover, violations of propagation locality would seem to
allow for superluminal signaling. Be that as it may, we simply assume
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here a propagation-local hypersurface evolution as given; further devel-
opments of this notion can be of interest for future works.

6. Evolution between hyperplanes Following [24, Sect. 8], we conjecture that
a hypersurface evolution E satisfying interaction locality and propagation
locality is uniquely determined up to unitary equivalence [24, Sect. 3.2
Remark 14] by its restriction to hyperplanes. We conjecture further that
a hypersurface evolution that is in addition Poincaré covariant (see Re-
mark 13 in Sect. 2.2) is uniquely determined by its restriction to hori-
zontal hyperplanes {x0 = const.}. While we do not have a proof of these
statements, a related statement follows from our results:

Suppose two hypersurface evolutions E = (H◦, P◦, U◦
◦ ) and Ẽ =

(H◦, P◦, Ũ◦
◦ ) use the same Hilbert spaces and PVMs but potentially dif-

ferent evolution operators; suppose further that the evolution operators
agree on hyperplanes, UE′

E = ŨE′
E for all spacelike hyperplanes E,E′;

finally, suppose that both E and Ẽ satisfy interaction locality and prop-
agation locality. Then they yield the same Born distribution on every
Cauchy surface Σ, i.e., for every Ψ0 ∈ HE0 on E0 = {x0 = 0} and every
S ⊆ Γ(Σ),

‖PΣ(S)UΣ
E0

Ψ0‖2 = ‖PΣ(S) ŨΣ
E0

Ψ0‖2 . (14)

Indeed, by Remark 2, (14) holds for all S ⊆ Σ if it holds for all
MP (L) for all admissible partitions P of Σ. By Theorem 1, both sides
can be expressed as the limits of detection probabilities on triangular
surfaces. Those in turn can be expressed, using the sequential detection
process, in terms of UE′

E respectively ŨE′
E only for hyperplanes E,E′, so

they are equal.

2. Definitions

2.1. Geometric Notions

We now begin the more technical part of this paper. We consider flat Minkowski
space-time M in 3+1 dimensions with metric tensor ημν = diag(1,−1,−1,−1).
space-time points are denoted by x = xμ = (x0,x) = (x0, x1, x2, x3), the
Minkowski square is denoted by x2 = xμxμ, Cauchy surfaces are denoted by
Σ ⊂ M. For piecewise flat Cauchy surfaces, we reserve the notation Υ ⊂ M, for
flat Cauchy surfaces (spacelike 3-planes), the notation E ⊂ M; E0 = {xμ : x0 =
0} ∼= R

3 is the time-zero hyperplane. For a topological space X, we will denote
by B(X) the corresponding Borel σ-algebra. The topology on Σ is that induced
by the Euclidean R

4-norm on M. Restricting the projection π as in (9) to Σ, we
obtain a homeomorphism πΣ = π|Σ : Σ → R

3, which can be used to identify
B(Σ) with B(R3): For R ⊆ Σ, we have that R ∈ B(Σ) ⇔ π(R) ∈ B(R3).
By Rademacher’s theorem, Σ possesses a tangent plane almost everywhere
[24, Sect. 3]. If a tangent plane exists at x ∈ Σ, the pullback of ημν under the
embedding Σ ↪→ M is either degenerate or a Riemann 3-metric. This metric
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can be used to define a volume measure μΣ on (Σ,B(Σ)), as well as a vol-
ume measure4 μΓ(Σ) on (Γ(Σ),B(Γ(Σ))). In the configuration space Γ(Σ), we
denote the n-particle sector by

Γn(Σ) := {q ⊆ Σ : #q = n} ⊂ Γ(Σ). (15)

Note that for disjoint sets A ∩ B = ∅, we have

Γ(A ∪ B) ∼= Γ(A) × Γ(B) (16)

with bijective identification map q �→ (q ∩ A, q ∩ B).

Definition 3. A triangular surface is a Cauchy surface Υ ⊂ M such that

Υ =
⋃

k∈K

Δk , (17)

where K is a countably infinite index set, each Δk is a 3-open, non-degenerate,
spacelike tetrahedron (i.e., the non-empty 3-interior of the convex hull of 3+1
points that are mutually spacelike), the Δk are mutually disjoint (Δk1 ∩Δk2 =
∅ for k1 �= k2), and every bounded region B ⊂ Υ intersects only finitely many
Δk.

2.2. Hypersurface Evolution

Definition 4. A hypersurface evolution E = (H◦, P◦, U◦
◦ ) is a collection of

1. Hilbert spaces HΣ for every Cauchy surface Σ, equipped with
2. A PVM PΣ : B(Γ(Σ)) → Proj(HΣ), the set of projections in HΣ,
3. Unitary isomorphisms UΣ′

Σ : HΣ → HΣ′ (“evolution”), and
4. A factorization mapping for every A ⊆ Σ, i.e., with the abbreviation

HΣ,A := Ran PΣ(∀(A)), (18)

(where Ran denotes the range), a unitary isomorphism TΣ,A : HΣ →
HΣ,A ⊗ HΣ,Σ\A (“translation”)

with the following properties:

(0) UΣ
Σ = IΣ and UΣ′′

Σ′ UΣ′
Σ = UΣ′′

Σ for all Cauchy surfaces Σ,Σ′,Σ′′.
(i) For every S ⊂ Γ(Σ) with μΓ(Σ)(S) = 0, also PΣ(S) = 0.
(ii) For every Σ, dim RanPΣ(∅(Σ)) = 1. That is, up to a phase, there is a

unique vacuum state |∅(Σ)〉 ∈ Ran PΣ(∅(Σ)) with
∥
∥|∅(Σ)〉∥∥ = 1.

(iii) TΣ,Σ\A = ΠTΣ,A with Π the permutation of two tensor factors
(iv) Factorization of the PVM:5 For all A,B ⊆ Σ,

PΣ(∀(B)) = T−1
Σ,A

[

PΣ(∀(A ∩ B)) ⊗ PΣ(∀(Ac ∩ B))
]

TΣ,A . (19)

4One of us claimed in [24] that the null sets of μΣ, when projected to R
3 with π, are exactly

the null sets of the Lebesgue measure in R
3; this is equivalent to saying that the set of points

of Σ with a lightlike tangent, when projected to R
3, is a null set. While we conjecture that

this is true, we do not see how to prove it. The statement is neither used in [24] nor here.
5Note that PΣ, restricted to subsets of ∀(A), maps HΣ,A to itself and in fact defines a PVM

on HΣ,A.
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This definition is equivalent to the one given in [24] but formulated in a
more detailed way, as the isomorphisms T were previously not made explicit.
We will often follow [24] and not make the isomorphism T explicit; that is,
instead of saying “the given unitary isomorphism TΣ,A maps HΣ to HΣ,A ⊗
HΣ,Σ\A,” we simply say “HΣ = HΣ,A ⊗ HΣ,Σ\A.” Likewise, instead of (19),
we simply write

PΣ(∀(B)) = PA(∀(A ∩ B)) ⊗ PAc(∀(Ac ∩ B)) , (20)

where PA means the restriction of PΣ to subsets of ∀(A) as in Footnote 5.

Remark. 7. Uniqueness of the vacuum state Actually, our Propositions and
the Theorem do not make use of property (ii), the uniqueness of the
vacuum state. The reason we make it part of the definition of E is that
it is part of the concept of hypersurface evolution as introduced in [24].

8. PΣ factorizes From (19) or (20), it follows that PΣ factorizes not just for
all-sets (i.e., sets of the form ∀(B)) but for all product sets in configuration
space: for all A ⊆ Σ, SA ⊆ ∀A, and SAc ⊆ ∀(Σ \ A),

PΣ(SA × SAc) = PA(SA) ⊗ PAc(SAc) (21)

with SA×SAc understood as a subset of Γ(Σ). That is because, first, ∀B =
∀(A∩B)×∀(Ac ∩B), second, the all-sets ∀C form a ∩-stable generator of
B(Γ(Σ)), and third, it is a standard theorem in probability theory that
measures (and hence also PVMs) agreeing on a ∩-stable generator of a σ-
algebra agree on the whole σ-algebra; so, roughly speaking, relations true
for all all-sets are true for all sets. Relation (21) is exactly the definition
of the tensor product of two POVMs, so it can equivalently be expressed
as

PΣ = PA ⊗ PAc . (22)

9. Splitting into more than two regions The restriction TΣ,B,A of TΣ,A to
HΣ,B maps HΣ,B unitarily to HΣ,A∩B ⊗ HΣ,Ac∩B. Moreover, (19) for
A ⊆ B yields that P factorizes also in B, i.e., for every A ⊆ B ⊆ Σ,
SA ⊆ ∀A, and SB\A ⊆ ∀(B \ A),

PΣ(SA × SB\A) = T−1
Σ,B,A

[

PΣ(SA) ⊗ PΣ(SB\A)
]

TΣ,B,A (23)

with SA×SB\A understood as a subset of ∀B. Furthermore, it follows that
TΣ,B,B\A = ΠTΣ,B,A, and that an associative law holds for the TΣ,B,A:
For any partition A1, A2, A3 of B ⊆ Σ,
(

IΣ,A1 ⊗ TΣ,A2∪A3,A2

)

TΣ,B,A1 =
(

TΣ,A1∪A2,A1 ⊗ IΣ,A3

)

TΣ,B,A1∪A2 . (24)

Hence, the Hilbert spaces and PVMs factorize also for finite partitions.
The upshot is that it is OK to identify

HΣ =
⊗

i

HΣ,Ai
and (25)

PΣ =
⊗

i

PAi
(26)

for any finite partition Σ =
⋃

i Ai.
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10. Examples for hypersurface evolutions E Some examples for hypersurface
evolutions can be found in [24]. As described there in Remark 15 and
Section 4.1, the simplest example is provided by the non-interacting Dirac
field without a Dirac sea, which also satisfies (IL) and (PL) as defined
below. Further examples are provided by Tomonaga–Schwinger equations
and multi-time wave functions (whose n-particle sectors are functions of
n space-time points, rather than n space points [23]); explicit models
include the emission-absorption model of [28] and the rigorous model
with contact interaction of [20,21]. Given an evolution law for multi-time
wave functions φ, UΣ′

Σ can be defined by UΣ′
Σ : φ|Σ �→ φ|Σ′ ; of course, one

still has to check that this UΣ′
Σ is indeed unitary. In fact, multi-time wave

functions have provided a major motivation for considering the curved
Born rule.

2.3. Locality Properties

Definition 5. E is propagation local (PL) if and only if

UΣ′
Σ PΣ(∀A)UΣ

Σ′ ≤ PΣ′(∀Gr(A,Σ′)) (27)

for all Cauchy surfaces Σ,Σ′ and all A ⊆ Σ.

Here, R ≤ S means that S − R is a positive operator; if R and S are
projections, then R ≤ S is equivalent to Ran R ⊆ RanS. In words, (PL) means
that if ΨΣ is concentrated in A ⊆ Σ, i.e., ΨΣ ∈ HΣ,A, then ΨΣ′ = UΣ′

Σ ΨΣ is
concentrated in Gr(A,Σ′). Also this definition is equivalent to the one given
in [24].

Also the definition of interaction locality was already given in [24] but
will be formulated here in a more detailed way. We begin with a summary of
the condition: First, in a region A where Σ and Σ′ overlap (see Fig. 6), HΣ,A

and HΣ′,A can be identified. The identification fits together with P and T .
Second, the time evolution from Σ \ A to Σ′ \ A (see Fig. 6) is given by a
unitary isomorphism V

Σ′\A
Σ\A : HΣ\A → HΣ′\A, the “local evolution” replacing

UΣ′
Σ . The fact that one can evolve from Σ\A to Σ′ \A means in particular that

this evolution does not depend on the state in A, that is, there is no interaction
term in the evolution that would couple Σ \ A to A. Finally, we require that
V

Σ′\A
Σ\A does not change when we deform A while keeping it spacelike from

Σ \ A.

Definition 6. E is interaction local (IL) if it is equipped in addition with, for all
Cauchy surfaces Σ,Σ′ and A ⊆ Σ ∩ Σ′, a unitary isomorphism JΣ′

A,Σ : HΣ,A →
HΣ′,A (“identification”) such that

JΣ′′
A,Σ′ JΣ′

A,Σ = JΣ′′
A,Σ whenever A ⊆ Σ ∩ Σ′ ∩ Σ′′ , (28)

JΣ′
B,Σ = JΣ′

A,Σ

∣
∣
∣
HΣ,B

for B ⊆ A ⊆ Σ ∩ Σ′ , (29)

(

JΣ′
A,Σ

)−1

PΣ′(∀B)JΣ′
A,Σ = PΣ(∀B) for B ⊆ A , (30)
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Figure 6. Depiction of interaction locality (IL). Color online

TΣ′,A UΣ′
Σ T−1

Σ,A = JΣ′
A,Σ ⊗ V Σ′

Σ\A,Σ (31)

with some unitary isomorphism V Σ′
Σ\A,Σ : HΣ,Σ\A → HΣ′,Σ′\A such that for

all Σ̃ ⊇ (Σ \ A), setting Ã := Σ̃ \ (Σ \ A) and Σ̃′ := Ã ∪ (Σ′ \ A),

V Σ̃′

Σ\A,Σ̃
= J Σ̃′

Σ′\A,Σ′ V Σ′
Σ\A,Σ JΣ

Σ\A,Σ̃
. (32)

Henceforth, we will not mention the J-operators explicitly any more and
following [24], we will simply write

HΣ,A = HΣ′,A =: HA . (33)

Further, we will write V
Σ′\A
Σ\A in place of V Σ′

Σ\A,Σ, which is compatible with the
Hilbert space identification.

Remark. 11 Other notions of locality There are several inequivalent (though
not unrelated) concepts of locality; they often play important roles in
selecting time evolution laws (e.g., [16,32]).

In the Wightman axioms (e.g., [31, p. 65]), a locality condition ap-
pears that is different from both (IL) and (PL), viz., (anti-)commutation
of field operators at spacelike separation. It seems clear that Wightman’s
locality is closely related to (IL) and (PL), and it would be of interest to
study this relation in detail in a future work.

Another different locality condition is often called Einstein locality
or Bell locality or just locality. It implies (IL) and (PL) but is not implied
by (IL) and (PL) together; it asserts that there are no influences between
events in spacelike separated regions; that may sound similar to (IL), but
it is not. In fact, Bell’s theorem [2,15] shows that Bell locality is violated,
whereas (IL) seems to be valid in our universe.

12 Consistency condition It is known that multi-time equations require a
consistency condition (e.g., [23, Chap. 2]). We note here that neither
(IL) nor (PL) follow from the consistency condition alone. Indeed, exam-
ples of (artificial) multi-time equations with an instantaneous interaction
(violating (IL)) that leaves the multi-time equations consistent were given
in Lemma 2.5 of [6], while the non-interacting multi-time equations with
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Schrödinger Hamiltonians −Δj for each particle j provide an example of
consistent multi-time equations violating (PL).

13 Poincaré covariance While the flat Born rule is inspired by the thought
that the full theory should be covariant under Poincaré transformations
(i.e., Lorentz transformation and space-time translations), we do not as-
sume covariance of the hypersurface evolution. To make this point, it may
be helpful to say explicitly what it would mean for a hypersurface evolu-
tion (H◦, U◦

◦ , P◦) to be Poincaré covariant: It would mean that for every
proper6 Poincaré transformation g and every Cauchy surface Σ there is
a unitary isomorphism Sg,Σ : HΣ → HgΣ (thought of as just Poincaré
transforming the wave function without evolving it) such that

Sid,Σ = IΣ , Sh,gΣ Sg,Σ = Shg,Σ (34)

UgΣ′
gΣ = Sg,Σ′ UΣ′

Σ S−1
g,Σ (35)

PgΣ(∀(gA)) = Sg,Σ PΣ(∀A)S−1
g,Σ (36)

TgΣ,gA Sg,Σ T−1
Σ,A = Sg,Σ|HΣ,A

⊗ Sg,Σ|HΣ,Σ\A
(37)

with TΣ,A as in Definition 4 item 4.
The representation U(g) of the proper Poincaré group on HE0 (E0 =

{x0 = 0}) that features (e.g.) in the Wightman axioms (e.g., [31, p. 65])
corresponds to

U(g) = UE0
gE0

Sg,E0 , (38)

that is, to using the Poincaré transformation g to shift Ψ from E0 and
subsequently using the time evolution to bring the state vector back to
E0.

3. Detection Process on Triangular Surfaces

We now give the detailed definitions of the sequential and parallel detection
processes and prove Propositions 3 and 4.

To begin with, consider an admissible partition P = (P1, . . . , Pr) of
a Cauchy surface Σ and a vector L = (L1, . . . , Lr) ∈ {0, 1}r. Actually, in
this section we will not make use of the assumption in Definition 1 that the
boundaries ∂P� are null sets, an assumption we need for Theorem 1.

The set of configurations in Γ(Σ) compatible with the single outcome L�

at an attempted detection in P� is

M�Σ(L�) :=

{

∃(P�) if L� = 1
∅(P�) if L� = 0

. (39)

6A proper Poincaré transformation is one that reflects neither space nor time; the set of

proper Poincaré transformations is often denoted by P↑
+.
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The set of configurations compatible with the measurement outcome vector L
when detection is attempted in P1, . . . , Pr is

MP (L) :=
r⋂

�=1

M�Σ(L�) . (40)

Now consider a triangular surface Υ =
⋃

k∈K Δk and an admissible par-
tition B = (B1, . . . , Br) of Υ. For either the sequential or the parallel detection
process on Υ, we imagine a small detector checking for particles in each

Bk� := Δk ∩ B� (41)

with outcome sk� = 1 if a particle was found and sk� = 0 otherwise.7

We say that the outcome matrix s is compatible with L (denoted s : L)
whenever

∀� ∈ {1, . . . , r} :

{

∃k ∈ K : sk� = 1 if L� = 1
∀k ∈ K : sk� = 0 if L� = 0

(42)

Let Ek be the hyperplane containing Δk. The configurations in Ek compatible
with outcomes sk� or sk := (sk1, . . . , skr) are then given by

Mk�Ek
(sk�) :=

{

∃(Bk�) ⊂ Γ(Ek) if sk� = 1
∅(Bk�) ⊂ Γ(Ek) if sk� = 0

, MkEk
(sk) :=

r⋂

�=1

Mk�Ek
(sk�).

(43)

Likewise,

Mk�Υ(sk�) :=

{

∃(Bk�) ⊂ Γ(Υ) if sk� = 1
∅(Bk�) ⊂ Γ(Υ) if sk� = 0

, MkΥ(sk) :=
r⋂

�=1

Mk�Υ(sk�).

(44)

It follows that, based on the definition (40),

MB (L) =
⋃

s:L

⋂

k∈K

MkΥ(sk) up to a set of measure 0, (45)

meaning that the symmetric difference between the two sets is a set of measure
0 in Γ(Υ). This is the case because, as described in Footnote 7, the configura-
tions in the symmetric difference have at least one particle in the 2d set ∂Δk

for some k.

7We could also have defined Bk� by Δk ∩ B� instead of (41), but that would have caused
a bit of trouble because these sets would not have been disjoint. Our choice (41), on the
other hand, has the consequence, which may at first seem like a drawback, that ∪kBk� �= B�

because we have removed the points on the 2d triangles where two tetrahedra meet. However,
the set removed, being a subset of a countable union of 2d triangles, has measure 0 on Υ,
and for any set A ⊆ Σ of measure 0, ∃(A) has measure 0 in Γ(Σ) and, by Definition 4, also
PΣ(∃(A)) = 0.
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3.1. Sequential Detection Process

We now formulate the definition of the sequential detection process and prove
agreement with the Born rule. Fix an ordering of K , i.e., a bijection K → N.
For ease of notation, we will simply replace K by N using this particular
ordering. The detection process is:

• Set E0 = {x0 = 0} and Ψ0 = ΨE0 .
• For each k in the specified order, do:

– Evolve Ψk−1 to Ek.
– Carry out detections of Bk� for all � = 1, . . . , r, i.e., quantum mea-

surements of PEk
(∃(Bk�)), and collapse accordingly, resulting in the

(normalized) state vector Ψk ∈ HEk
.

– Repeat.
Note that by Definition 3, each B� intersects only finitely many Δk.

Thus, from some K + 1 onwards, all Bk� are empty, sk� = 0, and no quantum
measurement needs to be carried out in Δk. Hence, it suffices to consider
finitely many repetitions in the above loop, namely those for k up to K.

From the flat Born rule and the flat collapse rule, we can now express
the detection probabilities and the collapsed state vectors. Fix some k and �;
suppose that in the previous tetrahedra k′ < k (i.e., none if k = 1), the mea-
surements have already been carried out with outcomes sk′�′ ; suppose further
that in the previous detector regions Bk�′ with �′ < � (i.e., none if � = 1) in the
same tetrahedron Δk, the measurements have already been carried out with
outcomes sk�′ ; suppose further that Ψk,�−1 is the collapsed wave function after
the previous measurements, which for � > 1 is given by the previous step, for
� = 1 and k > 1 is given by

Ψk,0 = UEk

Ek−1
Ψk−1,r (46)

(with Ψk−1,r = Ψk−1 in the notation of the process description above), and
for � = 1, k = 1 is given by

Ψ1,0 = UE1
E0

Ψ0 . (47)

Conditional on the previous detection outcomes, the probability distribution
of the next detection outcome sk� is, by the flat Born rule,

P(sk� = 1) =
∥
∥PEk

(∃(Bk�))Ψk,�−1

∥
∥

2
, (48)

and the state vector collapses, by the flat collapse rule, to

Ψk� =
PEk

(Mk�Ek
(skl))Ψk,�−1

‖PEk
(Mk�Ek

(skl))Ψk,�−1‖ . (49)

This completes the definition of the sequential detection process.

Lemma 1. Assume the flat Born rule and the flat collapse rule. Conditional
on the measurements in the tetrahedra k′ < k, the joint distribution of all
outcomes (sk�)�=1..r = sk in Δk is

P(sk1, . . . , skr) =
∥
∥PEk

(MkEk
(sk))Ψk0

∥
∥

2
, (50)
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and the collapsed wave function after the kr-measurement, given sk with nonzero
probability, is

Ψkr =
PEk

(MkEk
(sk))Ψk0

‖PEk
(MkEk

(sk))Ψk0‖ . (51)

Proof. It is a well known general fact about PVMs P that

P (S1)P (S2) = P (S2)P (S1) = P (S1 ∩ S2) (52)

and that a quantum measurement of P (S1) with outcome s1 on Ψ, followed
by one of P (S2) with outcome s2, have joint Born distribution

P(s1 = 1, s2 = 1) = P(s2 = 1|s1 = 1)P(s1 = 1) (53)

=
∥
∥
∥P (S2)

P (S1)Ψ
‖P (S1)Ψ‖

∥
∥
∥

2

‖P (S1)Ψ‖2 =
∥
∥
∥P (S1 ∩ S2)Ψ

∥
∥
∥

2

(54)

and collapsed state vector, given s1 = 1, s2 = 1,

Ψ′ = P (S2)
P (S1)Ψ

‖P (S1)Ψ‖/
∥
∥
∥P (S2)

P (S1)Ψ
‖P (S1)Ψ‖

∥
∥
∥ =

P (S1 ∩ S2)Ψ
‖P (S1 ∩ S2)Ψ‖ . (55)

Iteration with r sets rather than 2 and the definition of MkEk
(sk) yield Lemma 1.

�

Lemma 2. (IL) implies that

UΥ
Ek

PEk
(MkEk

(sk))UEk

Υ = PΥ(MkΥ(sk)). (56)

Proof. Decompose HEk
= HΔk

⊗HEk\Δk
and HΥ = HΔk

⊗HΥ\Δk
. By (IL),

we have that

UEk

Υ = IΔk
⊗ V

Ek\Δk

Υ\Δk
. (57)

We know that Γ(Ek) = Γ(Δk) × Γ(Ek \ Δk). The set MkEk
(sk) ⊆ Γ(Ek)

factorizes in the same way:

MkEk
(sk) = NkΔk

(sk) × Γ(Ek \ Δk) . (58)

That is because whether a configuration q is compatible with the outcome sk,
i.e., q ∈ MEk

(sk), does not depend on the points in q outside of Δk. Here, the
set NkΔk

(sk) ⊆ Γ(Δk) is defined in the analogous way to MkEk
(sk), i.e.,

NkΔk
(sk) :=

r⋂

�=1

Nk�Δk
(sk�), Nk�Δk

(sk�) :=

{

∃Δk
(Bk�) if sk� = 1

∅Δk
(Bk�) if sk� = 0,

(59)

where ∃A(B) means the set of all configurations in Γ(A) with at least one
particle in B. Hence, the projection PEk

(MkEk
(sk)) decomposes into a tensor

product

PEk
(MkEk

(sk)) = PΔk
(NkΔk

(sk)) ⊗ IEk\Δk
, (60)

and by (57),

UΥ
Ek

PEk
(MkEk

(sk))U
Ek
Υ = [IΔk

⊗ V
Υ\Δk
Ek\Δk

][PΔk
(NkΔk

(sk)) ⊗ IEk\Δk
][IΔk

⊗ V
Ek\Δk
Υ\Δk

]

= [IΔk
◦ PΔk

(NkΔk
(sk)) ◦ IΔk

] ⊗ [V
Υ\Δk
Ek\Δk

◦ IEk\Δk
◦ V

Ek\Δk
Υ\Δk

]
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= PΔk
(NkΔk

(sk)) ⊗ IΥ\Δk

= PΥ(MkΥ(sk)) (61)

for the same reasons as (60). �

Proposition 5. Assume the flat Born rule, the flat collapse rule, and (IL). The
unconditional joint distribution of all outcomes, i.e., of the matrix s comprising
all sk�, agrees with the Born distribution on Υ,

P(s) =
∥
∥
∥PΥ

(⋂

k∈N

MkΥ(sk)
)

ΨΥ

∥
∥
∥

2

(62)

with ΨΥ = UΥ
E0

Ψ0 (actually regardless of whether ∂B� are null sets). In partic-
ular, the distribution of L = (L1, . . . , Lr) is the Born distribution ‖PΥ(MBΥ(L))
ΨΥ‖2.

Proof. As noted before, all sk� vanish from some K +1 onwards (and formulas
below will take for granted they do), and we need consider only k ≤ K. The
fact, used before in (54), that for subsequent measurements the projections
multiply, yields from Lemma 1 that

P(s) =
∥
∥
∥UΥ

EK
PEK

(MKEK
(sK))UEK

Υ · · · UΥ
E1

PE1(M1E1(s1))UE1
Υ ΨΥ

∥
∥
∥

2

. (63)

Inserting (56) in (63) yields

P(s) =
∥
∥
∥PΥ(MKΥ(sK)) · · · PΥ(M1Υ(s1))ΨΥ

∥
∥
∥

2

=
∥
∥
∥PΥ

( K⋂

k=1

MkΥ(sk)
)

ΨΥ

∥
∥
∥

2

=
∥
∥
∥PΥ

(⋂

k∈N

MkΥ(sk)
)

ΨΥ

∥
∥
∥

2

,

(64)

as claimed. �

Proposition 4, insofar as it concerns the sequential detection process,
follows from Proposition 5 (actually regardless of whether ∂B� are null sets),
and Proposition 3 follows further as the special case in which r = 1, B1 = B,
and Br+1 = Bc.

3.2. Parallel Detection Process

We now formulate the definition of the parallel detection process and prove
the Born rule for it. Throughout the whole subsection, (IL) is assumed.

The proof of Lemma 2 also shows that, analogously to (56),

UΥ
Ek

PEk
(Mk�Ek

(sk�))UEk

Υ = PΥ(Mk�Υ(sk�)). (65)

As outlined in Sect. 1.3, the idea is to think of the detection attempt in Bk�

as a quantum measurement of the observable

UΥ
Ek

PEk
(∃(Bk�))UEk

Υ = PΥ(∃(Bk�)) , (66)
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which is (65) for sk� = 1. Since Bk� is non-empty only for finitely many k
(for k = 1, . . . , K), we are considering only finitely many observables. They
commute because projections belonging to the same PVM always commute.
Their simultaneous measurement is the definition of the parallel detection
process.

We now prove the Born rule for the parallel detection process. When
considering the simultaneous measurement of the operators (66), we need their
joint diagonalization; the joint eigenspace with eigenvalues (sk�)k� is the range
of

PΥ

(
K⋂

k=1

r⋂

�=1

Mk�Υ(sk�)

)

= PΥ

(
K⋂

k=1

MkΥ(sk)

)

, (67)

so the probability of the outcomes (sk�)k� is

∥
∥
∥PΥ

(
K⋂

k=1

MkΥ(sk)

)

ΨΥ

∥
∥
∥

2

, (68)

and the probability of outcome L is

∑

s:L

∥
∥
∥PΥ

(
K⋂

k=1

MkΥ(sk)

)

ΨΥ

∥
∥
∥

2

=
∥
∥
∥

∑

s:L

PΥ

(
K⋂

k=1

MkΥ(sk)

)

ΨΥ

∥
∥
∥

2

=
∥
∥
∥PΥ

(
⋃

s:L

K⋂

k=1

MkΥ(sk)

)

ΨΥ

∥
∥
∥

2

=
∥
∥
∥PΥ (MB (L)) ΨΥ

∥
∥
∥

2

(69)

because the sets
⋂K

k=1 MkΥ(sk) are mutually disjoint and thus their projections
are mutually orthogonal, and because of (45) and property (i) in Definition 4.
That is, the probability of outcome L agrees with the Born rule. This proves
the statement about the parallel detection process in Proposition 4 and thus
also in Proposition 3.

Another way of looking at the parallel detection process is based on tensor
products: Since Υ =

⋃K
k=1 Δk ∪ R with remainder set R = Υ \ ⋃K

k=1 Δk, we
have from Remark 9 in Sect. 2.2 that

HΥ =
K⊗

k=1

HΔk
⊗ HR . (70)

By (IL), each HΔk
can be regarded as a factor in HEk

= HΔk
⊗ HEk\Δk

.
With the flat Born rule in mind, or with the idea that PEk

is the configura-
tion observable on Ek, the attempted detection in Bk� can be regarded as a
quantum measurement in HEk

of the observable PEk
(∃(Bk�)), which is of the

form

PEk
(∃Ek

(Bk�)) = PΔk
(∃Δk

(Bk�)) ⊗ IEk\Δk
, (71)
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Figure 7. Construction of the approximating sequence
Υn ↗ Σ. Color online

Thus, the attempted detection in Bk� can also be regarded as a quantum mea-
surement in HΔk

of the observable PΔk
(∃Δk

(Bk�)). These observables com-
mute for different � and equal k because they belong to the same PVM PΔk

,
and they commute for different k in HΥ because of the tensor product struc-
ture (70). It follows that

PΥ(MB (L)) =
∑

s:L

K⊗

k=1

PΔk
(NkΔk

(sk)) ⊗ IR (72)

with NkΔk
as in (59), which agrees again with the Born rule on Υ, as claimed

in Proposition 4.

4. Approximation by Triangular Surfaces

In this section, we prove Propositions 1 and 2.

Proof of Proposition 1. Fix an n ∈ N and set ε = 3−n. We construct a 3ε-
approximation Υn to Σ. First, consider the function ft : M → M, (x0,x) �→
(x0 − t,x), which “lowers a point by an amount t in time.” We use f to define
the sets (see Fig. 7):

Σ2ε := f2ε[Σ], Σε..3ε :=
⋃

ε<ε′<3ε

fε′ [Σ]. (73)

So Σ2ε is a version of Σ, lowered by 2ε and Σε..3ε is a slice below Σ of thickness
2ε, centered at Σ2ε.

We now choose a decomposition of R
3 into (non-regular) tetrahedra

R
3 =

⋃

k∈N
Δ̃n

k with open Δ̃n
k such that each pair of vertices xn

k,i,x
n
k,j , i, j ∈

{1, 2, 3, 4} has a distance ‖xn
k,i −xn

k,j‖ ≤ ε and such that every bounded region
intersects only finitely many tetrahedra. For example, we may subdivide R

3

into axiparallel cubes with vertices on ε√
3
Z

3 and subdivide each cube into 3!
tetrahedra with vertices on ε√

3
Z

3.
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Figure 8. |h(y)| < ε illustrated in 2+1 dim. Color online

The four space-time points xn
k,i := π|−1

Σ2ε
xn

k,i ∈ M (obtained by lifting
xn

k,i up to the 2ε-surface, with i = 1, 2, 3, 4) span a spacelike open tetrahedron
Δn

k in M. Now set Υn :=
⋃

k∈N
Δn

k .

Claim. Υn is a uniform ε-approximation of Σ2ε, i.e., Υn ⊂ Σε..3ε (see Fig. 7).

Proof. Regard the surfaces Υn and Σ2ε as the graphs of functions R
3 → R,

henceforth denoted simply by Υn(·) and Σ2ε(·), that is, (Υn(x),x) ∈ Υn for all
x ∈ R

3 and x = (Υn(π(x)), π(x)) for all x ∈ Υn. Both functions are Lipschitz-
continuous with Lipschitz constant 1. Further, there is always a vertex of Δ̃n

k

(possibly several ones) that maximizes Υn(·) on Δ̃n
k (a “highest” vertex), and

one (or several) that minimizes Υn(·) (a “lowest” vertex). Now consider the
“height difference function” h(x) = Υn(x)−Σ2ε(x). (It is Lipschitz continuous
with Lipschitz constant 2.) For any vertex xn

k,i, we have that h(π(xn
k,i)) = 0.

And for any other point y ∈ Δn
k , we have that |π(xn

k,i) − π(y)|R3 < ε, so by
Lipschitz continuity,

Σ2ε(π(xn
k,i)) − Σ2ε(π(y)) < ε . (74)

If xn
k,i is a highest vertex, then

Υn(π(xn
k,i)) − Υn(π(y)) > 0

⇒ h(π(xn
k,i)) − h(π(y)) > −ε ⇔ h(π(y)) < ε

(75)

(see Fig. 8). The same reasoning with a lowest vertex yields h(π(y)) > −ε, so
in total |h(π(y))| < ε, which proves the claim. �
Claim. Υn is a Cauchy surface.

Proof. We need to show that Υn is intersected exactly once by every causal
inextendible curve γ : (−∞,∞) → M. We regard Υn again as the graph of an
equally denoted function Υn : R3 → R. Now, consider the height difference
function h(t) = γ0(t) − Υn(π(γ(t))), which tells us “by how much γ is above
Υn.” Since Υn consists of spacelike tetrahedra, Υn is Lipschitz-continuous
with Lipschitz constant ≤ 1. As γ is timelike-or-lightlike and w.l.o.g. directed
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Figure 9. Σ is being translated in the Proof of Proposition 6.
Color online

toward the future, we have that h is strictly increasing, so there can be at most
one t with h(t) = 0. That is, there is at most one intersection of γ with Υn.

On the other hand, an intermediate value argument yields that there must
be at least one intersection point: Otherwise, either h(t) > 0 for all t or h(t) < 0
for all t; w.l.o.g., assume the former case. Since Υn is an ε-approximation to
Σ2ε, we know that γ0(t) > Υn(π(γ(t))) > Σ2ε(π(γ(t))) − ε = Σ3ε(π(γ(t))),
which implies that γ does not intersect Σ3ε, but that is impossible because
Σ3ε is a Cauchy surface. �

We can now complete the proof of Proposition 1. Since Υn approximates
Σ2ε up to ε, it approximates Σ up to 3ε. Furthermore, Υn ⊂ Σε..3ε and Υn+1 ⊂
Σ 1

3 ε..ε, and since Σ 1
3 ε..ε lies in the future of Σε..3ε while being disjoint from

it, Υn+1 lies in the future of Υn (see Fig. 7). This completes the proof of
Proposition 1. �

Proposition 2 follows from the following statement:

Proposition 6. Let ε > 0, Σ be a Cauchy surface, aε := (ε, 0, 0, 0) the vertical
4-vector of length ε, and g : M → M, g ∈ P↑

+ a proper Poincaré transforma-
tion. Then

g[Σ + aε] ⊂
{

x + (s, 0, 0, 0) : x ∈ gΣ, 0 < s < ε̃
}

(76)

with

ε̃ = (βγ + γ)ε (77)

with β ∈ [0, 1) the boost velocity of g and γ := (1 − β2)−1/2 (the “Lorentz
factor”).

Proof of Proposition 6. A Poincaré transformation g consists of a translation
and a Lorentz transformation Λ, which in turn consists of a rotation and a
subsequent boost Λ0. The rotation leaves aε invariant. Thus, g[Σ + aε] =
gΣ + Λ0aε. Without loss of generality, Λ0 is a boost in the x1 direction (see
Figs. 9 and 10),
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Figure 10. The same structure after a boost. Color online

Λ0 =

⎛

⎜
⎜
⎝

γ βγ
βγ γ

1
1

⎞

⎟
⎟
⎠

, so Λ0aε =

⎛

⎜
⎜
⎝

γε
βγε
0
0

⎞

⎟
⎟
⎠

. (78)

Consider any point xa = (x0
a,xa) ∈ gΣ. Denote by xb = (x0

b ,xb) the
point on g[Σ+aε] right above xa, xb = xa. We want to show that x0

b ≤ x0
a + ε̃.

Set xc := xa + Λ0aε Since g[Σ + aε] is a Cauchy surface, any two points on it
(such as xb and xc) must be spacelike separated, so

|x0
b − x0

c | ≤ |xb − xc| = |xa − xc| = βγε. (79)

Now the triangle inequality implies the desired bound

|x0
b − x0

a| ≤ |x0
b − x0

c | + |x0
c − x0

a| ≤ βγε + γε = ε̃. (80)

�

5. Proof of Theorem 1

Here is a quick outline of the proof. We want to show that

PBn
(L) :=

∥
∥PΥn

(MBn
(L))ΨΥn

∥
∥

2 (81)

converges, as n → ∞, to

PP (L) :=
∥
∥PΣ(MP (L))ΨΣ

∥
∥

2
. (82)

The proof is done by a squeeze-theorem argument: We will define two proba-
bility distributions P̂n and qPn on {0, 1}r such that

P̂n(L) ≤ PBn
(L) ≤ qPn(L), P̂n(L) ≤ PP (L) ≤ qPn(L), (83)

and prove that P̂n(L), qPn(L) both converge to PP (L) as n → ∞.
We go through some preparations for the proof. To begin with, it is easy

to see that Bn = (Bn1, . . . , Bnr) with

Bn� = πΥn

Σ (P�) (84)
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Figure 11. Definition of Ĉn� and qCn�. Color online

is an admissible partition of Υn: First, Bn� ∩ Bnm = ∅ for � �= m because
πΥn

Σ is a bijection. Second, Bn� is bounded because πΥn

Σ maps bounded sets
to bounded sets. Third, the boundary ∂Bn� of Bn� in Υn is πΥn

Σ (∂P�) because
πΥn

Σ is a homeomorphism. Finally, in order to obtain that μΥn
(∂Bn�) = 0

we note that μΣ(∂P�) = 0, that Σ (and Υn) possesses a spacelike tangent
plane almost everywhere (relative to Lebesgue measure λ on R

3), and that, at
points with a spacelike tangent plane, μΣ possesses a nonzero density relative
to λ ◦ πΣ, so μΣ and λ ◦ πΣ have the same null sets.

For the definition of P̂n, qPn we introduce more notation:
We define

Ĉn� := Sr(Bn�,Σ), qCn� := Gr(Bn�,Σ). (85)

The corresponding sets of compatibility in configuration space Γ(Σ) are

M̂n�(L�) :=

{

∃(Ĉn�) if L� = 1
∅( qCn�) if L� = 0,

|Mn�(L�) :=

{

∃( qCn�) if L� = 1
∅(Ĉn�) if L� = 0,

(86)

M̂nΣ(L) :=
r⋂

�=1

M̂n�(L�), |MnΣ(L) :=
r⋂

�=1

|Mn�(L�). (87)

The probability distributions that serve for the squeeze-theorem bounds are
defined by

P̂n(L) := 〈ΨΣ|PΣ(M̂nΣ(L))|ΨΣ〉 qPn(L) := 〈ΨΣ|PΣ(|MnΣ(L))|ΨΣ〉.
(88)

Lemma 3 [Squeeze-theorem bound for PP ]. For all L ∈ {0, 1}r,

M̂nΣ(L) ⊆ MP (L) ⊆ |MnΣ(L), (89)

hence PΣ(M̂nΣ(L)) ≤ PΣ(MP (L)) ≤ PΣ(|MnΣ(L)), (90)

and P̂n(L) ≤ PP (L) ≤ qPn(L). (91)
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Proof. The statement is actually true for any triangular surface Υ, regardless
of whether it belongs to a sequence converging to Σ. Since we need it for Υn,
we use here the notation that refers to Υn.

The inclusion

Ĉn� ⊆ P� ⊆ qCn� (92)

is obvious, since π[Ĉn�] is a shrunk version of π[P�] (i.e., smaller) and π[ qCn�]
is a grown version of it (i.e., larger).

We “lift” those sets to configuration space, keeping in mind that

if A ⊆ B, then ∃(A) ⊆ ∃(B) and ∅(A) ⊇ ∅(B). (93)

By definition (86) we then have:

M̂n�(L�) ⊆ M�Σ(L�) ⊆ |Mn�(L�). (94)

Inclusions persist under intersections, i.e.,

if A� ⊆ B� for all �, then
⋂

�

A� ⊆
⋂

�

B� . (95)

This yields (89). The transition from sets M to projections P (M) as in (90)
is straightforward, and sandwiching between ΨΣ’s yields (91). �

Lemma 4 [Squeeze-theorem bound for PBn
]. Assume (PL). Then, for all L ∈

{0, 1}r,

PΣ(M̂nΣ(L)) ≤ UΣ
Υn

PΥn
(MBn

(L))UΥn

Σ ≤ PΣ(|MnΣ(L)), (96)

hence P̂n(L) ≤ PBn
(L) ≤ qPn(L). (97)

Proof. Also this statement is actually true for any triangular surface Υ, re-
gardless of whether it belongs to a sequence converging to Σ.

By (PL) (27),

UΣ′
Σ PΣ(∀A)UΣ

Σ′ ≤ PΣ′(∀Gr(A,Σ′)) . (98)

Since (∃A)c = ∅A = ∀(Ac), we have that

UΣ′
Σ PΣ(∃A)UΣ

Σ′ = UΣ′
Σ (I − PΣ((∃A)c))UΣ

Σ′

= UΣ′
Σ (I − PΣ(∀(Ac)))UΣ

Σ′

≥ I − PΣ′(∀Gr(Ac,Σ′))

= I − PΣ′(∀(Sr(A,Σ′)c))

= I − PΣ′((∃Sr(A,Σ′))c)

= PΣ′(∃Sr(A,Σ′))

(99)
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and

UΣ′
Σ PΣ(∅A)UΣ

Σ′ = UΣ′
Σ PΣ(∀(Ac))UΣ

Σ′

≤ PΣ′(∀Gr(Ac,Σ′))

= PΣ′(∀(Sr(A,Σ′)c))

= PΣ′(∅Sr(A,Σ′)) .

(100)

Thus, inserting A → Bn�, Σ → Υn, and Σ′ → Σ,

UΣ
Υn

PΥn
(∃Bn�)UΥn

Σ ≥ PΣ(∃Ĉn�)

UΣ
Υn

PΥn
(∅Bn�)UΥn

Σ ≤ PΣ(∅Ĉn�) .
(101)

On the other hand, inserting A → qCn�, Σ′ → Υn, and Σ → Σ,

UΥn

Σ PΣ(∃ qCn�)UΣ
Υn

≥ PΥn
(∃Sr( qCn�,Υn))

UΥn

Σ PΣ(∅ qCn�)UΣ
Υn

≤ PΥn
(∅Sr( qCn�,Υn)) .

(102)

Since for A ⊆ Σ always

A ⊆ Sr(Gr(A,Σ′),Σ) , (103)

and since A ⊆ B implies ∃(A) ⊆ ∃(B) and ∅(A) ⊇ ∅(B), we have that

PΥn
(∃Sr( qCn�,Υn)) ≥ PΥn

(∃Bn�)

PΥn
(∅Sr( qCn�,Υn)) ≤ PΥn

(∅Bn�) .
(104)

Putting together (101), (102), (104),

PΣ(∅ qCn�) ≤ UΣ
Υn

PΥn
(∅Bn�)UΥn

Σ ≤ PΣ(∅Ĉn�)

PΣ(∃Ĉn�) ≤ UΣ
Υn

PΥn
(∃Bn�)UΥn

Σ ≤ PΣ(∃ qCn�),
(105)

that is, in another notation,

PΣ(M̂n�(L�)) ≤ UΣ
Υn

PΥn
(M�Υn

(L�))UΥn

Σ ≤ PΣ(|Mn�(L�)) . (106)

Now we want to conclude an analogous statement about L instead of
L�. Note that UΣ

Υn
PΥn

(·)UΥn

Σ and PΣ(·) are two different PVMs that will in
general not even commute with each other. The argument that we need has
the following general form: For two different PVMs P1, P2, the ranges satisfy
the relations

P1(A1) ≤ P2(A2) ∧ P1(B1) ≤ P2(B2)

⇔ Ran(P1(A1)) ⊆ Ran(P2(A2)) ∧ Ran(P1(B1)) ⊆ Ran(P2(B2))

⇒ Ran(P1(A1)) ∩ Ran(P1(B1))
︸ ︷︷ ︸

=Ran(P1(A1)P1(B1))

⊆ Ran(P2(A2)) ∩ Ran(P2(B2))
︸ ︷︷ ︸

=Ran(P2(A2)P2(B2))

⇔ P1(A1)P1(B1) ≤ P2(A2)P2(B2)

⇔ P1(A1 ∩ B1) ≤ P2(A2 ∩ B2).

(107)

Applying this argument to (106) and the finite intersection
⋂

� yields (96). �
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Figure 12. Convergence of the sets qCn� as n → ∞ for fixed
� as in Lemma 5. Color online

Lemma 5. Fix � ∈ {1, . . . , r}; qCn� is a decreasing sequence of sets, qCn� ⊇
qCn+1,�, with

⋂

n∈N

qCn� ⊆ P�. (108)

Ĉn� is an increasing sequence of sets, Ĉn� ⊆ Ĉn+1,�, with
⋃

n∈N

Ĉn� ⊇ interiorΣ(P�). (109)

In particular,
⋂

n∈N

qCn� \ Ĉn� ⊆ ∂P� . (110)

Moreover, equality holds in (108), (109), and (110) whenever Υn ∩ Σ = ∅.
Proof. The decreasing/increasing behavior of the sequence is a direct conse-
quence of Υn+1 ⊆ future(Υn) and the definition of grown and shrunk set. For
demonstrating (108), since πΣ is a homeomorphism Σ → R

3, it suffices to show
that

⋂

n π( qCn�) ⊆ π(P�) in R
3. If y /∈ π(P�), then it has positive distance to

π(P�) and π[[Σ − (ε, 0, 0, 0)] ∩ past(π−1
Σ (y))] is disjoint from π(P�) for suffi-

ciently small ε > 0, so y /∈ π( qCn�) for sufficiently large n. Similar arguments
yield (109). Concerning the statement about equality, in that case for every
x ∈ Bn�, future(x) ∩ past(Σ) has nonempty interior in M, so π( qCn�) contains
an open neighborhood of π(P�) and thus π(P�). Similarly for the interior. �

Lemma 6. For every L ∈ {0, 1}r,
⋂

n∈N

|MnΣ(L) \ M̂nΣ(L) is a null set w.r.t.

μΓ(Σ).

Proof. We make use here of the requirement μΣ(∂P�) = 0 in Definition 1.
Consider first |Mn�(L�) and M̂n�(L�). In case L� = 1, we have that

|Mn�(1) = ∃ qCn�, M̂n�(1) = ∃Ĉn�

⇒ |Mn�(1) \ M̂n�(1) = (∃ qCn�) ∩ (∅Ĉn�).
(111)
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In case L� = 0, we have that

|Mn�(0) \ M̂n�(0) = (∅Ĉn�) ∩ (∃ qCn�). (112)

So either way,

|Mn�(L�) \ M̂n�(L�) = (∅Ĉn�) ∩ (∃ qCn�) ⊆ ∃( qCn� \ Ĉn�). (113)

Now we want to consider L instead of L�. It is a general fact about sets that
if A� ⊆ B� for all �, then

(⋂

�

B�

)

\
(⋂

�

A�

)

⊆
⋃

�

(B� \ A�). (114)

Thus, for A� = M̂n�(L�) and B� = |Mn�(L�),

|MnΣ(L) \ M̂nΣ(L) ⊆
r⋃

�=1

|Mn�(L�) \ M̂n�(L�) ⊆
r⋃

�=1

∃( qCn� \ Ĉn�)

= ∃
( r⋃

�=1

( qCn� \ Ĉn�)
)

. (115)

Now we want to take the intersection over all n ∈ N. In this regard, we first
note the following extension of (93): if (An)n∈N is a decreasing sequence of
sets, then

⋂

n

∃An = ∃
(⋂

n

An

)

. (116)

After all, if q is a finite set that intersects every An, then it must contain a point
from

⋂

n An; conversely, a finite set q intersecting
⋂

n An trivially intersects
every An.

Applying this to An =
⋃

�( qCn� \ Ĉn�), which is decreasing because qCn� \
Ĉn� is, we obtain that

⋂

n∈N

|MnΣ(L) \ M̂nΣ(L) ⊆ ∃
(⋂

n∈N

r⋃

�=1

qCn� \ Ĉn�

)

. (117)

It is another general fact about sets (not unrelated to (116)) that if for every
� ∈ {1, . . . , r}, (An�)n∈N is a decreasing sequence of sets, then

⋂

n∈N

r⋃

�=1

An� =
r⋃

�=1

⋂

n∈N

An� . (118)

Thus, for An� = qCn� \ Ĉn�,

⋂

n∈N

|MnΣ(L) \ M̂nΣ(L) ⊆ ∃
( r⋃

�=1

⋂

n∈N

qCn� \ Ĉn�

)

⊆ ∃
( r⋃

�=1

∂P�

)

(119)

by Lemma 5 and (93). For any set A with μΣ(A) = 0 it follows that ∃A
is, in every sector of configuration space Γ(Σ), a finite union of null sets, so
μΓ(Σ)(∃A) = 0. For A =

⋃

� ∂P� we obtain the statement of Lemma 6. �
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Proof of Theorem 1. By Lemma 3 and 4, it suffices to show that for every
L ∈ {0, 1}r,

qPn(L) − P̂n(L) → 0 as n → ∞. (120)

From Lemma 6 and the requirement (i) of Definition 4, according to
which PΣ must be absolutely continuous with respect to μΓ(Σ), we have that

PΣ

(
⋂

n∈N

|MnΣ(L) \ M̂nΣ(L)

)

= 0 . (121)

The continuity property of measures μ says that, for every decreasing se-
quence An of sets with

⋂

n An =: A∞, μ(An) → μ(A∞) as n → ∞. For
every ΨΣ ∈ HΣ, μ(·) := 〈ΨΣ|PΣ(·)|ΨΣ〉 is a measure. We know from Lemma 3
that M̂nΣ(L) ⊆ |MnΣ(L).

We show that for every L ∈ {0, 1}r, the sequence An := |MnΣ(L)\M̂nΣ(L)
is decreasing: It suffices to show that |MnΣ(L) is decreasing and M̂nΣ(L) is in-
creasing. We know from Lemma 5 that qCn� is decreasing and Ĉn� is increasing,
so by (93), both ∃ qCn� and ∅Ĉn� are decreasing, so |Mn�(L�) (which is either
∃ qCn� or ∅Ĉn�, depending on L�) is decreasing, and so is

|MnΣ(L) =
r⋂

�=1

|Mn�(L�) . (122)

Likewise, M̂n�(L�) (which is either ∃Ĉn� or ∅ qCn�, depending on L�) is increas-
ing, and so is M̂nΣ(L). Therefore, An is decreasing, as claimed.

We can conclude that
qPn(L) − P̂n(L) = 〈ΨΣ|PΣ

(
|MnΣ(L) \ M̂nΣ(L)

)|ΨΣ〉 → 0 as n → ∞.

(123)

This establishes the desired squeeze theorem argument and finishes the proof
of Theorem 1. �

Proof of Corollary 2. It is well known that for a sequence Pn of projections,
weak convergence to the projection P (i.e., 〈Ψ|Pn|Ψ〉 → 〈Ψ|P |Ψ〉 for every
Ψ) implies strong convergence (i.e., PnΨ → PΨ for every Ψ).8 Set Pn =
UΣ

Υn
PΥn

(MBn
(L))UΥn

Σ and P = PΣ(MP (L)). Then Theorem 1 provides the
weak convergence, and the strong convergence was what we claimed. �

Remark. 14. Type of convergence of (Υn)n∈N The proof of Theorem 1 still
goes through unchanged if the convergence of the sequence (Υn)n∈N is
not uniform but uniform on every bounded set.

8For the sake of completeness, here is a proof: First, P 2
n = Pn and P 2 = P imply that

‖PnΨ‖2 = 〈Ψ|P 2
n |Ψ〉 = 〈Ψ|Pn|Ψ〉 → 〈Ψ|P |Ψ〉 = ‖PΨ‖2. Second, since 〈Ψ|S|Φ〉 can be

expressed through 〈Ψ±Φ|S|Ψ±Φ〉 and 〈Ψ± iΦ|S|Ψ± iΦ〉 (polarization identity [30, p. 63]),
weak convergence implies 〈Ψ|Pn|Φ〉 → 〈Ψ|P |Φ〉 for every Ψ and Φ. Now ‖PnΨ − PΨ‖2 =
〈Ψ|(Pn − P )2|Ψ〉 = 〈Ψ|P 2

n − PnP − PPn + P 2|Ψ〉 = ‖PnΨ‖2 − 〈Ψ|Pn|PΨ〉 − 〈PΨ|Pn|Ψ〉 +
‖PΨ‖2 → ‖PΨ‖2 − 〈Ψ|P |PΨ〉 − 〈PΨ|P |Ψ〉 + ‖PΨ‖2 = 0.
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15. Alternative definition of Bn� In order to avoid the choice of a particular
Lorentz frame in the definition of Bn� and thus of the detection proba-
bilities, we could replace Bn� by

qBn� := Sr(P�,Υn) . (124)

(The use of Gr instead of Sr would lead to overlap among the Bn�, so
they would no longer form a partition.) With this change, Theorem 1
remains valid. In the proof, we then need to modify the definition of Ĉn�

to

Ĉn� := Sr( qBn�,Σ) , (125)

while the definition of qCn� is kept as it is. We would still use a preferred
Lorentz frame for the definition of qCn�, but that is a matter of the method
of proof, not of the statement of the theorem. The proof goes through as
before, except that (109) needs to be checked anew: it is still true because
for every x in the 3-interior of P�, Gr(Gr(x,Υn),Σ) ⊂ P� for sufficiently
large n.
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