We compute the Milnor-Witt 2 -stem of stable homotopy groups of motivic spheres over fields of characteristic not 2 in terms of motivic cohomology and hermitian K - groups. The answer reveals new relations among algebraic cycles, algebraic vector bundles equipped with quadratic forms, and stable motivic stems.
The second stable homotopy groups of motivic spheres / O. Röndigs, M. Spitzweck, P.A. Oestvaer. - In: DUKE MATHEMATICAL JOURNAL. - ISSN 0012-7094. - 173:6(2024 Apr 15), pp. 1017-1084. [10.1215/00127094-2023-0023]
The second stable homotopy groups of motivic spheres
P.A. OestvaerUltimo
2024
Abstract
We compute the Milnor-Witt 2 -stem of stable homotopy groups of motivic spheres over fields of characteristic not 2 in terms of motivic cohomology and hermitian K - groups. The answer reveals new relations among algebraic cycles, algebraic vector bundles equipped with quadratic forms, and stable motivic stems.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
00127094-2023-0023.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
707.74 kB
Formato
Adobe PDF
|
707.74 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
twoline-arxiv-5(1).pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
535.45 kB
Formato
Adobe PDF
|
535.45 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.