We compute the Milnor-Witt 2 -stem of stable homotopy groups of motivic spheres over fields of characteristic not 2 in terms of motivic cohomology and hermitian K - groups. The answer reveals new relations among algebraic cycles, algebraic vector bundles equipped with quadratic forms, and stable motivic stems.

The second stable homotopy groups of motivic spheres / O. Röndigs, M. Spitzweck, P.A. Oestvaer. - In: DUKE MATHEMATICAL JOURNAL. - ISSN 0012-7094. - 173:6(2024 Apr 15), pp. 1017-1084. [10.1215/00127094-2023-0023]

The second stable homotopy groups of motivic spheres

P.A. Oestvaer
Ultimo
2024

Abstract

We compute the Milnor-Witt 2 -stem of stable homotopy groups of motivic spheres over fields of characteristic not 2 in terms of motivic cohomology and hermitian K - groups. The answer reveals new relations among algebraic cycles, algebraic vector bundles equipped with quadratic forms, and stable motivic stems.
Settore MATH-02/B - Geometria
15-apr-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
00127094-2023-0023.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 707.74 kB
Formato Adobe PDF
707.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
twoline-arxiv-5(1).pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 535.45 kB
Formato Adobe PDF
535.45 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1100369
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact