For every $\alpha \in (0,+\infty)$ and $p,q \in (1,+\infty)$ let $T_\alpha$ be the operator $L^p[0,1]\to L^q[0,1]$ defined via the equality $(T_\alpha f)(x) := \int_0^{x^\alpha} f(y) d y$. We study the norms of $T_\alpha$ for every $p$, $q$. In the case $p=q$ we further study its spectrum, point spectrum, eigenfunctions, and the norms of its iterates. Moreover, for the case $p=q=2$ we determine the point spectrum and eigenfunctions for $T^*_\alpha T_\alpha$, where $T^*_\alpha$ is the adjoint operator.

A one parameter family of Volterra-type operators / F. Battistoni, G. Molteni. - (2024 Aug 08). [10.48550/arXiv.2408.17124]

A one parameter family of Volterra-type operators

F. Battistoni;G. Molteni
2024

Abstract

For every $\alpha \in (0,+\infty)$ and $p,q \in (1,+\infty)$ let $T_\alpha$ be the operator $L^p[0,1]\to L^q[0,1]$ defined via the equality $(T_\alpha f)(x) := \int_0^{x^\alpha} f(y) d y$. We study the norms of $T_\alpha$ for every $p$, $q$. In the case $p=q$ we further study its spectrum, point spectrum, eigenfunctions, and the norms of its iterates. Moreover, for the case $p=q=2$ we determine the point spectrum and eigenfunctions for $T^*_\alpha T_\alpha$, where $T^*_\alpha$ is the adjoint operator.
Volterra operator; spectral radius; spectrum;
Settore MATH-03/A - Analisi matematica
8-ago-2024
http://arxiv.org/abs/2408.17124v1
File in questo prodotto:
File Dimensione Formato  
paper-Volterra.pdf

accesso aperto

Descrizione: articolo
Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 426.4 kB
Formato Adobe PDF
426.4 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1097516
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact