For every $\alpha \in (0,+\infty)$ and $p,q \in (1,+\infty)$ let $T_\alpha$ be the operator $L^p[0,1]\to L^q[0,1]$ defined via the equality $(T_\alpha f)(x) := \int_0^{x^\alpha} f(y) d y$. We study the norms of $T_\alpha$ for every $p$, $q$. In the case $p=q$ we further study its spectrum, point spectrum, eigenfunctions, and the norms of its iterates. Moreover, for the case $p=q=2$ we determine the point spectrum and eigenfunctions for $T^*_\alpha T_\alpha$, where $T^*_\alpha$ is the adjoint operator.
A one parameter family of Volterra-type operators / F. Battistoni, G. Molteni. - (2024 Aug 08). [10.48550/arXiv.2408.17124]
A one parameter family of Volterra-type operators
F. Battistoni;G. Molteni
2024
Abstract
For every $\alpha \in (0,+\infty)$ and $p,q \in (1,+\infty)$ let $T_\alpha$ be the operator $L^p[0,1]\to L^q[0,1]$ defined via the equality $(T_\alpha f)(x) := \int_0^{x^\alpha} f(y) d y$. We study the norms of $T_\alpha$ for every $p$, $q$. In the case $p=q$ we further study its spectrum, point spectrum, eigenfunctions, and the norms of its iterates. Moreover, for the case $p=q=2$ we determine the point spectrum and eigenfunctions for $T^*_\alpha T_\alpha$, where $T^*_\alpha$ is the adjoint operator.File | Dimensione | Formato | |
---|---|---|---|
paper-Volterra.pdf
accesso aperto
Descrizione: articolo
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
426.4 kB
Formato
Adobe PDF
|
426.4 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.