Tumors undergo dynamic immunoediting as part of a process that balances immunologic sensing of emerging neoantigens and evasion from immune responses. Tumor-infiltrating lymphocytes (TIL) comprise heterogeneous subsets of peripheral T cells characterized by diverse functional differentiation states and dependence on T-cell receptor (TCR) specificity gained through recombination events during their development. We hypothesized that within the tumor microenvironment (TME), an antigenic milieu and immunologic interface, tumor-infiltrating peripheral T cells could reexpress key elements of the TCR recombination machinery, namely, Rag1 and Rag2 recombinases and Tdt polymerase, as a potential mechanism involved in the revision of TCR specificity. Using two syngeneic invasive breast cancer transplantable models, 4T1 and TS/A, we observed that Rag1, Rag2, and Dntt in situ mRNA expression characterized rare tumor-infiltrating T cells. In situ expression of the transcripts was increased in coisogenic Mlh1-deficient tumors, characterized by genomic overinstability, and was also modulated by PD-1 immune-checkpoint blockade. Through immunolocalization and mRNA hybridization analyses, we detected the presence of rare TDT+RAG1/2+ cells populating primary tumors and draining lymph nodes in human invasive breast cancer. Analysis of harmonized single-cell RNA-sequencing data sets of human cancers identified a very small fraction of tumor-associated T cells, characterized by the expression of recombination/revision machinery transcripts, which on pseudotemporal ordering corresponded to differentiated effector T cells. We offer thought-provoking evidence of a TIL microniche marked by rare transcripts involved in TCR shaping.

T cells expressing receptor recombination/revision machinery are detected in the tumor microenvironment and expanded in genomically over-unstable models AC / G. Morello, V. Cancila, M. La Rosa, G. Germano, D. Lecis, V. Amodio, F. Zanardi, F. Iannelli, D. Greco, L. La Paglia, A. Fiannaca, A.M. Urso, G. Graziano, F. Ferrari, S.M. Pupa, S. Sangaletti, C. Chiodoni, G. Pruneri, A. Bardelli, M.P. Colombo, C. Tripodo. - In: CANCER IMMUNOLOGY RESEARCH. - ISSN 2326-6066. - 9:7(2021 Jul), pp. 825-837. [10.1158/2326-6066.CIR-20-0645]

T cells expressing receptor recombination/revision machinery are detected in the tumor microenvironment and expanded in genomically over-unstable models AC

G. Germano;G. Pruneri;C. Tripodo
Ultimo
2021

Abstract

Tumors undergo dynamic immunoediting as part of a process that balances immunologic sensing of emerging neoantigens and evasion from immune responses. Tumor-infiltrating lymphocytes (TIL) comprise heterogeneous subsets of peripheral T cells characterized by diverse functional differentiation states and dependence on T-cell receptor (TCR) specificity gained through recombination events during their development. We hypothesized that within the tumor microenvironment (TME), an antigenic milieu and immunologic interface, tumor-infiltrating peripheral T cells could reexpress key elements of the TCR recombination machinery, namely, Rag1 and Rag2 recombinases and Tdt polymerase, as a potential mechanism involved in the revision of TCR specificity. Using two syngeneic invasive breast cancer transplantable models, 4T1 and TS/A, we observed that Rag1, Rag2, and Dntt in situ mRNA expression characterized rare tumor-infiltrating T cells. In situ expression of the transcripts was increased in coisogenic Mlh1-deficient tumors, characterized by genomic overinstability, and was also modulated by PD-1 immune-checkpoint blockade. Through immunolocalization and mRNA hybridization analyses, we detected the presence of rare TDT+RAG1/2+ cells populating primary tumors and draining lymph nodes in human invasive breast cancer. Analysis of harmonized single-cell RNA-sequencing data sets of human cancers identified a very small fraction of tumor-associated T cells, characterized by the expression of recombination/revision machinery transcripts, which on pseudotemporal ordering corresponded to differentiated effector T cells. We offer thought-provoking evidence of a TIL microniche marked by rare transcripts involved in TCR shaping.
Settore BIO/17 - Istologia
Settore BIOS-13/A - Istologia ed embriologia umana
lug-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
825.full.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.13 MB
Formato Adobe PDF
2.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1083779
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact