This study explores the capability of amphibole in tracing the physicochemical process of magma mixing through spatially associated gabbros, mafic microgranular enclaves (MMEs) and granodiorites from central Tibet. These rocks share similar zircon ages as well as zircon Hf-O and plagioclase Sr isotopes. However, the amphiboles within the gabbros and granodiorites have different Sr and B isotope compositions, while amphiboles with both heterogeneous isotopic imprints occur in the MMEs. According to data and modeling, significant mixing of two isotopically distinct magmas is recorded by amphibole but not by zircon and plagioclase. Based on a synthesis of petrography, geochemistry and thermobarometry, we interpret this inconsistency by the crystallization order of minerals and propose that magma mixing occurred after the parent magma was emplaced at ∼10 km and cooled to ∼750°C. Our study highlights that amphibole may be a more sensitive tracer of magma mixing relative to other commonly used methods.

The Capability of Amphibole in Tracing the Physicochemical Processes of Magma Mixing / M. Li, Y. Zeng, M. Tiepolo, J. Xu, E. Cannaò, F. Forni, F. Huang. - In: GEOPHYSICAL RESEARCH LETTERS. - ISSN 0094-8276. - 51:14(2024 Jul 28), pp. e2024GL108906.1-e2024GL108906.9. [10.1029/2024gl108906]

The Capability of Amphibole in Tracing the Physicochemical Processes of Magma Mixing

M. Tiepolo
Methodology
;
E. Cannaò
Methodology
;
F. Forni
Penultimo
Methodology
;
2024

Abstract

This study explores the capability of amphibole in tracing the physicochemical process of magma mixing through spatially associated gabbros, mafic microgranular enclaves (MMEs) and granodiorites from central Tibet. These rocks share similar zircon ages as well as zircon Hf-O and plagioclase Sr isotopes. However, the amphiboles within the gabbros and granodiorites have different Sr and B isotope compositions, while amphiboles with both heterogeneous isotopic imprints occur in the MMEs. According to data and modeling, significant mixing of two isotopically distinct magmas is recorded by amphibole but not by zircon and plagioclase. Based on a synthesis of petrography, geochemistry and thermobarometry, we interpret this inconsistency by the crystallization order of minerals and propose that magma mixing occurred after the parent magma was emplaced at ∼10 km and cooled to ∼750°C. Our study highlights that amphibole may be a more sensitive tracer of magma mixing relative to other commonly used methods.
Settore GEO/08 - Geochimica e Vulcanologia
28-lug-2024
10-lug-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
24_Li-2024-GRL.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.41 MB
Formato Adobe PDF
2.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1075668
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact