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Abstract This study explores the capability of amphibole in tracing the physicochemical process of magma
mixing through spatially associated gabbros, mafic microgranular enclaves (MMEs) and granodiorites from
central Tibet. These rocks share similar zircon ages as well as zircon Hf‐O and plagioclase Sr isotopes.
However, the amphiboles within the gabbros and granodiorites have different Sr and B isotope compositions,
while amphiboles with both heterogeneous isotopic imprints occur in the MMEs. According to data and
modeling, significant mixing of two isotopically distinct magmas is recorded by amphibole but not by zircon
and plagioclase. Based on a synthesis of petrography, geochemistry and thermobarometry, we interpret this
inconsistency by the crystallization order of minerals and propose that magma mixing occurred after the parent
magma was emplaced at ∼10 km and cooled to ∼750°C. Our study highlights that amphibole may be a more
sensitive tracer of magma mixing relative to other commonly used methods.

Plain Language Summary Magma mixing significantly shapes the composition of silicic igneous
rocks representing the major constituent of the upper continental crust. Since bulk‐rock composition may only
bear the average of mixed sources, in situ techniques such as Hf‐O isotopes in zircon and Sr‐Pb isotopes in
plagioclase are widely used to investigate the details of magma mixing. However, these methods cannot
constrain how magma mixing operates in the deep crust. This study novelly uses in situ Sr‐B isotopes and trace
elements in amphibole to trace the physicochemical process of magma mixing through spatially associated
gabbros, mafic microgranular enclaves and granodiorites from the central Tibetan Plateau. Our data show that
significant mixing of two isotopically distinct magmas is recorded by amphibole but not by zircon and
plagioclase. We demonstrate that the amphibole geochemistry (i.e., trace element, Sr‐B isotope compositions)
may be more sensitive in tracing magma mixing relative to traditional isotopic tools and has the potential to
unravel the physicochemical process(es) of magma mixing in the deep crust. In addition, our work reinforces the
use of B isotopes in amphibole to discern the nature (fluids released from altered oceanic crust vs. residual slab)
of the slab components that metasomatized the supra‐subduction mantle.

1. Introduction
Magmamixing significantly shapes the composition of silicic igneous rocks, representing the major constituent of
the upper continental crust. Because bulk‐rock composition may only bear the average of mixed sources (e.g.,
Barnes et al., 2021), in situ techniques such as Hf‐O isotopes in zircon and Sr isotopes in clinopyroxene and
plagioclase are widely used to investigate magma mixing processes (e.g., Francalanci et al., 2005; Kemp
et al., 2007). Zircon and plagioclase, however, are unable to provide the physicochemical conditions of melt
crystallization (pressure and/or temperature) and thus the record of magma mixing is decoupled from the P‐T
conditions, leaving a key question unanswered: where does magma mixing occur in the crust? Clinopyroxene is a
good geo‐thermo‐barometer but is relatively sparse in felsic igneous rocks. Amphibole, a principal mineral of
igneous rocks of wide compositions, is deemed to play a major role in forming felsic igneous rocks (Davidson
et al., 2007). Furthermore, amphibole is among the most useful minerals in reconstructing the physicochemical
conditions of melt crystallization because of the well‐calibrated thermobarometers and amphibole‐melt trace
element partition coefficients (Ridolfi et al., 2010; Schmidt, 1992; Tiepolo et al., 2007). So far, O‐H and B
isotopes in amphibole have been used to investigate metasomatic processes in the mantle (e.g., Banerjee
et al., 2018; Cannaò et al., 2022), while little attention has been devoted to the role of amphibole in the formation
of granitoids.
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Here we report bulk‐rock and mineral geochemical data on a set of spatially associated gabbros, granodiorites and
their hosted mafic microgranular enclaves (MMEs) in central Tibet. Our results shed light on the capability of
amphibole geochemistry (trace elements and Sr‐B isotopes) in tracing the physicochemical process of deep
crustal magma mixing and in discerning the nature (fluids released from altered oceanic crust vs. residual slab) of
the slab components that metasomatized supra‐subduction mantle.

2. Geological Background and Petrography
The gabbro, granodiorite and their hosted MMEs samples were collected near the Wuma village, and tectonically
belong to the northern Lhasa Block of Tibetan Plateau (Figures 1a and 1b). These rocks intrude into the Jurassic to
Lower Cretaceous sedimentary strata at ca. 110 Ma (Wei et al., 2018). Early Cretaceous magmatic rocks are
widespread on the northern Lhasa Block (Figure S1 in Supporting Information S1), most of which are granitoids
with depleted Sr‐Hf‐Nd isotopic compositions and thereby imply a juvenile lower crust underneath (Zeng
et al., 2020; Zhu et al., 2011). Three competing hypotheses have been proposed to explain the tectonic setting
responsible for the formation of these rocks, including post‐collision lithospheric delamination following the
Lhasa‐Qiangtang continental collision (Hu et al., 2017), southward subduction of Meso‐Tethyan lithosphere (Zhu
et al., 2011), or northward subduction of the Neo‐Tethyan lithosphere (Figure S1 in Supporting Information S1;
Kapp & DeCelles, 2019; M. J. Li et al., 2023).

Figure 1. (a) Tectonic framework of Tibetan Plateau; (b) Field distribution of the main lithologies investigated in this work; (c) Field relationship between mafic
microgranular enclave and granodiorite; (d)–(h) microphotograph for the Wuma magmatic complex: brown amphiboles are euhedral and contain plagioclase inclusions
(d), green amphiboles are mostly subhedral and contain plagioclase and zircon inclusions (f)–(h), whereas K‐feldspar is anhedral and grown at the rim of the green
amphiboles (g). BAM, brown amphibole; GAM, green amphiboles; Pl, plagioclase; Kfs, K‐feldspar; Bi, biotite; Mag, magnetite; Q, quartz.
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The mineral assemblages of the three rock types are summarized in Table S1 of Supporting Information S1 and
representatively shown by photomicrographs in Figure 1. In brief, amphibole and plagioclase are the dominant
minerals among the three rock types, while K‐feldspar, biotite and quartz are only present in the MMEs and
granodiorite. Accessory minerals in the three types of rocks are similar, which are zircon, apatite, and magnetite.
Notably, the amphiboles in the MME occur either as brown or green grain (Figures 2e and 2f), reflecting different
chemical compositions (Table S2 in Supporting Information S1), while the gabbros only contain brown
amphiboles.

Figure 2. Diagrams of in situ isotope values for zircon ((a) SiO2 vs. εHf(t)—(b) εHf(t) vs. δ
18O), plagioclase and amphibole

((c) 87Sr/86Sr—(e) B vs. δ11B) from the gabbros, mafic microgranular enclaves and granodiorite in the northern Lhasa Block.
In (a)–(b), the Sr and Hf isotopes of Lhasa basement‐derived melt are represented by the Jurassic S‐type granite (Zhu
et al., 2011), and the O isotope of bulk sediment average is from Spencer et al. (2014). In (d), the parameters used for magma
mixing between mean gabbro composition and basement (bulk‐rock) or their melt in the 87Sr/86Sr versus Sr diagram are
present in Table S12 of Supporting Information S1. In (f), the calculated δ11B and B contents for slab‐derived fluids and
complementary residual slab during progressive dehydration (from 30 to 120 km) are based on Tonarini et al. (2011). BAM,
brown amphibole; GAM, green amphiboles.
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3. Analytical Results
Representative samples were analyzed for zircon U‐Pb geochronology and Lu‐Hf isotope, bulk‐rock element and
Sr‐Nd isotope, and in situ mineral element and Sr‐B isotope compositions (analytical methods and data are
present in the Text and Tables S2–S11 in Supporting Information S1). U‐Pb zircon geochronology yields mean
age of 110.3 ± 1.1 Ma (1σ) for the gabbro, 113.6 ± 0.6 Ma (1σ) for the MME, and 113.1 ± 0.6 Ma (1σ) for
granodiorite (Figure S2 in Supporting Information S1). However, the 206Pb/238U age of individual zircon grains in
the gabbro (108.1 ± 0.7 Ma to 113.8 ± 1.1 Ma; 1σ), MME (110.3 ± 1.1 Ma to 115.9 ± 1.6 Ma; 1σ), and
granodiorite (112.3 ± 1.5 Ma to 114.5 ± 1.5 Ma; 1σ) are broadly overlap. Thus, given the external uncertainty of
Laser Ablation Inductively Coupled Plasma Mass Spectrometry zircon U‐Pb dating (≥2% at 1σ level; X. Li
et al., 2015), we suggest three groups of rocks share similar formation ages within allowed errors and emplaced at
ca. 110 Ma. Among the studied rocks, the gabbros have the highest MgO, lowest SiO2, and most depleted bulk‐
rock Sr‐Nd isotopes (87Sr/86Sri = 0.7043 to 0.7044; εNd(t) = +2.36 to +2.41), while the granodiorites
have the lowest MgO, highest SiO2 and most enriched bulk‐rock Sr‐Nd isotopes (

87Sr/86Sri = 0.7062 to 0.7072;
εNd(t) = +1.27 to +1.58) (Figure S3 and Table S7 in Supporting Information S1). As shown in Figures 2a and 2b,
the three rock types have similar and relatively uniform zircon Hf‐O isotopic signatures (εHf(t) = +6.1 to +9.7;
δ18O = +6.4 to +7.9‰). Despite the different bulk‐rock Sr‐Nd isotopic compositions, plagioclases in the three
rock types have similar and relatively homogenous Sr isotopic compositions (87Sr/86Sr = 0.7042 to 0.7049;
Figure 2c). Furthermore, the major element compositions of plagioclases in the three rock types are similar, with
the anorthite component ranging from An40 to An59 (Figure S4 in Supporting Information S1). In contrast, the Sr
and B isotopic ratios of amphiboles in the three rock types have a bimodal distribution and the two clusters mainly
reflect amphibole geochemistry. Specifically, according to the Leake et al. (1997) classification scheme, the green
amphiboles are magnesiohornblende, while the brown amphiboles are pargasite and edenite. Besides, the green
amphiboles exhibit lower Al2O3 and TiO2 contents and more pronounced Zr, Ba, Sr, and Eu negative anomalies
compared to brown amphibole (Figures 3a and 3b). Isotopically, brown amphiboles have lower 87Sr/86Sr
(87Sr/86Sr = 0.7046 to 0.7049) and δ11B (− 16.4 to − 9.0‰) than the green amphiboles (87Sr/86Sr = 0.7091 to
0.7120; δ11B= − 7.0 to − 3.2‰) (Figures 2c and 2e). Notably, the in situ Sr isotopic signatures of plagioclase and
brown amphibole are similar to that of the bulk gabbro (Figure 2c).

4. Physical Condition of Mineral Crystallization
In amphibole, Al‐tschermak substitution is sensitive to variations in pressure whereas Ti‐Tschermak variation
may reflect changes in pressure, water activity, and temperature, or a combination thereof (Ridolfi et al., 2010;
Schmidt, 1992). Thus, the different Al2O3 and TiO2 contents of the green amphiboles and brown amphiboles
imply they crystallized under different temperatures and pressures. We use the experimentally calibrated Al‐in‐
hornblende barometer (Schmidt, 1992) and the empirical formulations of thermometer based on a synthesis of
experimental results (Ridolfi et al., 2010) to estimate the crystallization pressure and temperature of the melt in
equilibrium with the studied amphiboles (Table S2 in Supporting Information S1). Our data reveal that the
parental magma of brown amphiboles was hotter (T = 900–960°C; mean = 930°C) and deeper (P = 470–580
Mpa) compared to that of green amphiboles (T = 730–830°C, mean = 770°C; P = 110–390 Mpa; Figures 3c and
3d). Besides, we also estimate the temperatures of zircon crystallization by using the updated Ti‐in‐zircon
thermometer (Loucks et al., 2020), achieving comparable results among the three rock types (T = 760–880°C,
mean = 820°C; Table S3 in Supporting Information S1 and Figure 3c).

5. The Apparent Isotope Paradox and Interpretation
The similarities of U‐Pb age, Hf‐O isotopes and crystallization temperatures for zircon, as well as the Sr isotopic
signature of plagioclase, among the nearby three rock types, suggests that zircon and plagioclase crystallized from
the same magma plumbing system. In the traditional view, the uniform zircon Hf‐O and plagioclase Sr isotopes of
the three rock types provide evidence for an isotopically depleted magma source with negligible contribution
from isotopically enriched materials (Francalanci et al., 2005; Kemp et al., 2007). However, the in situ Sr isotope
data of brown amphiboles and green amphiboles document that the granodiorites and MMEs are the composite of
two isotopically distinct end members (i.e., depleted vs. enriched). This apparent isotope paradox can be
accounted for by the crystallization order of these minerals. The green amphiboles in the granodiorite and MMEs
contain plagioclase and zircon inclusions (Figures 1f–1h) and display pronounced negative Sr, Ba and Zr
anomalies (Figure 3b). This, together with the relatively low crystallization temperature of green amphiboles
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(Figure 3c), suggests that they likely crystallized after plagioclase and zircon. The biotites and K‐feldspars are the
latest crystallized phases as they are mostly anhedral and grow on the rim of the green amphiboles (Figure 1g). K‐
feldspars likely crystallized after biotites given their pronounced negative Ba anomalies (Figure 3b). In the
gabbro, the brown amphiboles are euhedral with plagioclase inclusions (Figure 1d) and display weak or no
negative Eu anomalies (Figure 3b), suggesting they crystallized simultaneously with plagioclase. Coupled with
the higher crystallization temperature of brown amphibole relative to zircon, we infer that the crystallization
sequence is plagioclase ≥ brown amphibole > zircon > green amphibole > biotite > K‐feldspar (Table S1 in
Supporting Information S1). Thus, the plagioclase, brown amphibole and zircon were most likely crystallized
from the uncontaminated magmas having depleted Sr and Hf isotopes. In comparison, green amphiboles (and the
minerals crystallized after them like K‐feldspar and biotite) in the MMEs and granodiorite likely crystallized from
a more evolved magma contaminated by ancient crustal materials, as testified by their more radiogenic Sr isotopic
imprints (up to 0.712, Figure 2c, Table S9 in Supporting Information S1).

6. The Physicochemical Framework of Magma Mixing in the Deep Crust
The gabbro lacks cumulate texture (Figure 1d) and geochemical indicators typical of cumulate rocks, such as
positive Eu anomalies for plagioclase cumulation, and convex upward chondrite‐normalized rare earth element
(REE) abundance patterns for amphibole cumulation (Figure S3d in Supporting Information S1), which, there-
fore, likely represent solid magmas. The lower MgO and the higher SiO2 contents of the granodiorite compared to
the MMEs are likely due to fractional crystallization processes rather than to different degrees of crustal
assimilation since the green amphiboles in these rocks have similar Sr isotopic imprints (Figure 2c). The brown
amphiboles consist only a small proportion of the MME (5%–10%; Table S1 in Supporting Information S1),
which may have been completely removed during the magmatic evolution as they are absent in the granodiorite. It

Figure 3. (a) Plot of TiO2 versus Al2O3, (b) trace element distributions, (c) crystallization temperature, and (d) pressure (data
in Table S2 of Supporting Information S1) for amphiboles in the Wuma magmatic complex. In (b) the negative anomalies in
Zr, Sr, Eu, and Ba reflect zircon, feldspar and biotite crystallization effects. BAM, brown amphibole; GAM, green
amphiboles.
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is not uncommon that early‐crystallized high‐temperature and high‐pressure amphiboles are completely removed
during evolution of mafic magmas to intermediate‐felsic magmas (Davidson et al., 2007; Smith, 2014). The key
for the interpretation of magma mixing processes thus is to clarify the origin of the MMEs. The bulk‐rock
composition of MMEs represents the average of the composite of minerals (and possible intergranular melt)
crystallized from the uncontaminated and contaminated magmas and, therefore, they show hybrid composition.
For this reason, we calculate the melt composition in equilibrium with the green amphiboles to constrain the
composition of the contaminated magma at the beginning. Our modeling indicates that the pristine mafic magmas
should have undergone 30%–45% crystallization of an assemblage comprising brown amphibole, plagioclase, and
clinopyroxene in the middle‐lower (∼20 km) part of continental crust (Figures 2d and 4a). Then the residual melts
were contaminated by a significant amount (up to 40%) of ancient crustal components to crystallize green am-
phiboles, K‐feldspar and biotite when ascent to ca. 10 km below the surface and cooled down to ca. 750°C
(Figures 2d and 4a). Of note, the Zr content in the equilibriummelt of GAMs is relatively low as indicated by their
pronounced negative Zr anomalies (Figure 3d), which may restrain crystallization of zircons with enriched Hf
isotopes signifying magma contamination.

7. Petrological Implications of Amphibole B Isotope Data
The gabbros are representative of nearly primitive mantle melts given their high MgO (4.5–14.5 wt. %) and Mg#
(52–74) (Table S6 in Supporting Information S1). In these rocks, brown amphiboles represent the early‐
crystallized phase and their δ11B values are thus reflective of their mantle source. Notably, most brown am-
phiboles possess lower δ11B values (− 16.4 to − 9.0‰) than those of the depleted mantle (ca. − 7.1‰, Marschall
et al., 2017) and of the mafic arc rocks derived from the mantle metasomatized by slab‐derived fluid (up to
+18‰). This suggests the involvement of a residual (substantially dehydrated) slab component in the mantle
source of the studied gabbros (e.g., Kaliwoda et al., 2011; Marschall et al., 2017; Tonarini et al., 2011). Given the
unradiogenic Sr isotopes in the brown amphiboles, the slab component responsible for their low δ11B signature
should be derived from a deeply subducted oceanic slab instead of a subducted continental crust. From this
perspective, the Early Cretaceous magmatism in the northern Lhasa Block is more likely triggered by subduction
of the Neo‐Tethyan or Meso‐Tethyan slab rather than by lithospheric delamination following the Lhasa‐
Qiangtang collision (Figure 4b; Zeng et al., 2020; Zhu et al., 2011). Indeed, the B isotopic signatures of
amphibole from mafic rocks are not sensitive to magmatic differentiation (i.e., crystal fractionation and magma
mixing) being a relatively early‐crystallized mineral in hydrous magma. Thus, amphibole has the potential to
discern the nature of the slab components that metasomatized supra‐subduction mantle regions in other localities.
Unfortunately, to date, the B isotope data of amphibole have been rarely investigated (Cannaò et al., 2022;
Kaliwoda et al., 2011; Wang et al., 2020), and more studies focusing on the B isotope fractionation between
silicate mineral and melt/fluid are needed (e.g., Kowalski & Wunder, 2018).

Figure 4. (a) Cartoon illustrating the proposed scenario for the formation of theWumamagmatic complex. (b) Cartoon illustrating the δ11B variation along the subducted
oceanic slab due to its progressive dehydration and release of B and 11B through Rayleigh fractionation. This process produces residual slab components with extremely
low δ11B values that impact the geochemistry of primitive magma in subduction zones. BAM, brown amphibole; GAM, green amphiboles; Pl, plagioclase; Bi, biotite;
Kfs, K‐feldspar; Zr, zircon; Cpx, clinopyroxene.
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The δ11B amphibole‐melt fractionation during amphibole crystallization is negligible (Kaliwoda et al., 2011),
indicating that the δ11B of the equilibriummelt should be equal to that of the amphibole. Furthermore, plagioclase
crystallizes slightly earlier or simultaneously with brown amphibole, while zircon crystallizes after brown
amphibole, both of which B is strongly incompatible (Bindeman & Davis, 2000; Chakraborty et al., 1993;
Chowdhury et al., 2020) and their crystallization should thus have limited impact on the δ11B values of the re-
sidual melts. Therefore, the higher δ11B values in the green amphiboles relative to the brown amphiboles are
unlikely related to Rayleigh fractionation, but they are instead proxies of the addition of 11B‐rich materials
(Figure 2f). Such high δ11B component may reflect the δ11B isotopic composition of the assimilant (Palmer &
Swihart, 1996) or the fluids released during crustal assimilation (e.g., Kaliwoda et al., 2011). This process is not
recorded by the δ18O of zircons that are widely considered to be sensitive to fluid‐rock interaction and/or
sediment input (Spencer et al., 2014; Valley et al., 2005; Figure 2b), further bolstering our scenario invoking
zircons crystallization before green amphiboles.

8. Conclusions and Outlook
Based on the detailed petrographic and geochemical investigations on the coeval gabbro, MMEs and granodiorite
exposed nearby in the northern Lhasa Block, our study highlights that the amphibole geochemistry (i.e., trace
element, Sr‐B isotope compositions) may be more sensitive in tracing magma mixing relative to traditional
isotopic tools such as the Hf and O in zircon and 87Sr/86Sr ratios in plagioclase. This is mainly due to the wider
range of temperature and pressure stability of amphibole during the ascending of the parental melt, allowing us to
unravel the physicochemical process(es) of magma mixing in the deep crust. The role of magma mixing in the
formation of granitoid rocks (at least for some like theMMEs and granodiorites in this study) may be considerably
underrated by the commonly used isotopic tools. In addition, our work reinforces the use of B isotopes in
amphibole to investigate the nature of slab contribution in the genesis of magmatic rocks at subduction zones.

Data Availability Statement
The supplementary tables include data of the assemblage, texture and geochemistry of minerals (Table S1 in
Supporting Information S1), in situ amphibole major element compositions (Table S2 in Supporting Informa-
tion S1), crystallization temperature of the zircon (Table S3 in Supporting Information S1), zircon U‐Pb ages and
Lu‐Hf‐O isotope compositions (Tables S4 and S5 in Supporting Information S1), bulk‐rock major and trace
element compositions (Table S6 in Supporting Information S1), bulk‐rock Sr‐Nd isotope compositions (Table S7
in Supporting Information S1), in situ amphibole trace element compositions (Table S8 in Supporting Infor-
mation S1), in situ mineral Sr isotope compositions (Table S9 in Supporting Information S1), in situ amphibole B
isotope compositions (Table S10 in Supporting Information S1), in situ plagioclase major element compositions
(Table S11 in Supporting Information S1), partition coefficients and end member used for magma fractionation
and mixing modeling (Table S12 in Supporting Information S1). The supplementary figures consist of simplified
geological map showing the space distributions of Early Cretaceous magmatic rocks (Figure S1 in Supporting
Information S1), zircon concordant U–Pb age (Figure S2 in Supporting Information S1), plots of Na2O + K2O,
MgO with SiO2, εNd(t) versus (

87Sr/86Sr)i, and chondrite‐normalized rare earth element (Figure S3 in Supporting
Information S1), and compositions of plagioclase and amphibole (Figure S4 in Supporting Information S1). All
these data can also be found online (M. J. Li et al., 2024).
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