In this work we present a novel strategy to evaluate multi-variable integrals with quantum circuits. The procedure first encodes the integration variables into a parametric circuit. The obtained circuit is then derived with respect to the integration variables using the parameter shift rule technique. The observable representing the derivative is then used as the predictor of the target integrand function following a quantum machine learning approach. The integral is then estimated using the fundamental theorem of integral calculus by evaluating the original circuit. Embedding data according to a reuploading strategy, multi-dimensional variables can be easily encoded into the circuit’s gates and then individually taken as targets while deriving the circuit. These techniques can be exploited to partially integrate a function or to quickly compute parametric integrands within the training hyperspace.

Multi-variable integration with a variational quantum circuit / J.M. Cruz Martinez, M. Robbiati, S. Carrazza. - In: QUANTUM SCIENCE AND TECHNOLOGY. - ISSN 2058-9565. - 9:3(2024 Jun 25), pp. 035053.1-035053.13. [10.1088/2058-9565/ad5866]

Multi-variable integration with a variational quantum circuit

M. Robbiati
Penultimo
;
S. Carrazza
Ultimo
2024

Abstract

In this work we present a novel strategy to evaluate multi-variable integrals with quantum circuits. The procedure first encodes the integration variables into a parametric circuit. The obtained circuit is then derived with respect to the integration variables using the parameter shift rule technique. The observable representing the derivative is then used as the predictor of the target integrand function following a quantum machine learning approach. The integral is then estimated using the fundamental theorem of integral calculus by evaluating the original circuit. Embedding data according to a reuploading strategy, multi-dimensional variables can be easily encoded into the circuit’s gates and then individually taken as targets while deriving the circuit. These techniques can be exploited to partially integrate a function or to quickly compute parametric integrands within the training hyperspace.
high energy physics; integration methods; quantum machine learning;
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
25-giu-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
2308.05657v1.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri
Cruz-Martinez_2024_Quantum_Sci._Technol._9_035053.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 635.75 kB
Formato Adobe PDF
635.75 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1066248
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact