Cells respond to lysosomal membrane permeabilization by membrane repair or selective macroautophagy of damaged lysosomes, termed lysophagy, but it is not fully understood how this decision is made. Here, we uncover a pathway in human cells that detects lipid bilayer perturbations in the limiting membrane of compromised lysosomes, which fail to be repaired, and then initiates ubiquitin-triggered lysophagy. We find that SPG20 binds the repair factor IST1 on damaged lysosomes and, importantly, integrates that with the detection of damage-associated lipid-packing defects of the lysosomal membrane. Detection occurs via sensory amphipathic helices in SPG20 before rupture of the membrane. If lipid-packing defects are extensive, such as during lipid peroxidation, SPG20 recruits and activates ITCH, which marks the damaged lysosome with lysine-63-linked ubiquitin chains to initiate lysophagy and thus triages the lysosome for destruction. With SPG20 being linked to neurodegeneration, these findings highlight the relevance of a coordinated lysosomal damage response for cellular homeostasis.

Lysosomal damage sensing and lysophagy initiation by SPG20-ITCH / P. Gahlot, B. Kravic, G. Rota, J. van den Boom, S. Levantovsky, N. Schulze, E. Maspero, S. Polo, C. Behrends, H. Meyer. - In: MOLECULAR CELL. - ISSN 1097-4164. - 84:8(2024), pp. 1556-1569. [10.1016/j.molcel.2024.02.029]

Lysosomal damage sensing and lysophagy initiation by SPG20-ITCH

E. Maspero;S. Polo;
2024

Abstract

Cells respond to lysosomal membrane permeabilization by membrane repair or selective macroautophagy of damaged lysosomes, termed lysophagy, but it is not fully understood how this decision is made. Here, we uncover a pathway in human cells that detects lipid bilayer perturbations in the limiting membrane of compromised lysosomes, which fail to be repaired, and then initiates ubiquitin-triggered lysophagy. We find that SPG20 binds the repair factor IST1 on damaged lysosomes and, importantly, integrates that with the detection of damage-associated lipid-packing defects of the lysosomal membrane. Detection occurs via sensory amphipathic helices in SPG20 before rupture of the membrane. If lipid-packing defects are extensive, such as during lipid peroxidation, SPG20 recruits and activates ITCH, which marks the damaged lysosome with lysine-63-linked ubiquitin chains to initiate lysophagy and thus triages the lysosome for destruction. With SPG20 being linked to neurodegeneration, these findings highlight the relevance of a coordinated lysosomal damage response for cellular homeostasis.
ESCRT; ITCH; Troyer syndrome; lipid sensing; lysophagy; lysosomal membrane permeabilization; lysosomal repair; spartin; spastic paraplegia; ubiquitin
Settore MED/04 - Patologia Generale
2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
PIIS1097276524001722.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 7.61 MB
Formato Adobe PDF
7.61 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1054748
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
social impact