Set in the Riemannian enviroment, the aim of this paper is to present and discuss some equivalent characterizations of the Liouville property relative to special operators, which in some sense are modeled after the p-Laplacian with potential. In particular, we discuss the equivalence between the Liouville property and the Khas'minskii condition, i.e. the existence of an exhaustion function which is also a supersolution for the operator outside a compact set. This generalizes a previous result obtained by one of the authors.

On the equivalence of stochastic completeness and Liouville and Khas’minskii conditions in linear and nonlinear settings / L. Mari, D. Valtorta. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - 365:9(2013), pp. 4699-4727. [10.1090/S0002-9947-2013-05765-0]

On the equivalence of stochastic completeness and Liouville and Khas’minskii conditions in linear and nonlinear settings

L. Mari
Primo
;
2013

Abstract

Set in the Riemannian enviroment, the aim of this paper is to present and discuss some equivalent characterizations of the Liouville property relative to special operators, which in some sense are modeled after the p-Laplacian with potential. In particular, we discuss the equivalence between the Liouville property and the Khas'minskii condition, i.e. the existence of an exhaustion function which is also a supersolution for the operator outside a compact set. This generalizes a previous result obtained by one of the authors.
Khas'minskii condition; Parabolicity; Stochastic completeness;
Settore MAT/03 - Geometria
Settore MAT/05 - Analisi Matematica
2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
main_khas-lucio.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 646.6 kB
Formato Adobe PDF
646.6 kB Adobe PDF Visualizza/Apri
S0002-9947-2013-05765-0.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 372.46 kB
Formato Adobe PDF
372.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1039330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 21
  • OpenAlex ND
social impact