We revisit the derivation of the time-dependent Hartree-Fock equation for interacting fermions in a regime coupling a mean-field and a semiclassical scaling, contributing two comments to the result obtained in 2014 by Benedikter, Porta, and Schlein. First, the derivation holds in arbitrary space dimension. Second, by using an explicit formula for the unitary implementation of particle-hole transformations, we cast the proof in a form similar to the coherent state method of Rodnianski and Schlein for bosons.

Two Comments on the Derivation of the Time-Dependent Hartree-Fock Equation / N. Benedikter, D. Desio (SPRINGER INDAM SERIES). - In: Quantum Mathematics I / [a cura di] Michele Correggi, Marco Falconi. - [s.l] : Springer, 2023 Dec 01. - ISBN 978-981-99-5893-1. - pp. 319-333 (( convegno INdAM Meeting: Quantum Mathematics Workshop tenutosi a Milano nel 2022 [10.1007/978-981-99-5894-8_13].

Two Comments on the Derivation of the Time-Dependent Hartree-Fock Equation

N. Benedikter
Primo
;
2023

Abstract

We revisit the derivation of the time-dependent Hartree-Fock equation for interacting fermions in a regime coupling a mean-field and a semiclassical scaling, contributing two comments to the result obtained in 2014 by Benedikter, Porta, and Schlein. First, the derivation holds in arbitrary space dimension. Second, by using an explicit formula for the unitary implementation of particle-hole transformations, we cast the proof in a form similar to the coherent state method of Rodnianski and Schlein for bosons.
Mathematical Physics; Mathematical Physics; Mathematics - Mathematical Physics; 81V70, 82B10, 81Q10, 35P05
Settore MAT/07 - Fisica Matematica
   The Mathematics of Interacting Fermions (FermiMath)
   FermiMath
   EUROPEAN COMMISSION
   101040991
1-dic-2023
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
978-981-99-5894-8.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 9.88 MB
Formato Adobe PDF
9.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2207.07939v1.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 175.82 kB
Formato Adobe PDF
175.82 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1039140
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact