Preclinical and clinical data indicate that the 5-lipoxygenase pathway becomes activated in cardiovascular diseases suggesting an important role of CysLTs in atherosclerosis and in its ischemic complications. This study aims to investigate the effects of montelukast, a CysLTR-1 antagonist, in a mouse model of myocardial infarction (MI). C57BL/6N female mice were subjected to coronary artery ligation and received montelukast (10 mg/kg/day, intraperitoneal) or vehicle. Montelukast exerted beneficial effects in the infarcted area, decreasing mRNA expression of inflammatory genes, such Il1β and Ccl2 (p < 0.05), at 48 h after MI, and reducing infarct size and preventing ischemic wall thinning (p < 0.05) at 4 weeks. Furthermore, montelukast counteracted maladaptive remodelling of whole heart. Indeed, montelukast reduced LV mass (p < 0.05) and remote wall thickening (p < 0.05), and improved cardiac pumping function, as evidenced by increased global ejection fraction (p < 0.01), and regional contractility in infarcted (p < 0.05) and in remote non-infarcted (p < 0.05) myocardium. Finally, montelukast prevented cardiomyocytes hypertrophy (p < 0.05) in remote myocardium, reducing the phosphorylation of GSK3β, a regulator of hypertrophic pathway (p < 0.05). Our data strongly demonstrate the ability of montelukast to contrast the MI-induced maladaptive conditions, thus sustaining cardiac contractility. The results provide evidences for montelukast "repurposing" in cardiovascular diseases and in particular in myocardial infarction.

Montelukast, an available and safe anti-asthmatic drug, prevents maladaptive remodelling and maintains cardiac functionality following myocardial infarction / M. Muluhie, L. Castiglioni, J. Rzemieniec, B. Mercuriali, P. Gelosa, L. Sironi. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 14:1(2024 Feb 09), pp. 3371.1-3371.12. [10.1038/s41598-024-53936-x]

Montelukast, an available and safe anti-asthmatic drug, prevents maladaptive remodelling and maintains cardiac functionality following myocardial infarction

M. Muluhie
Primo
;
L. Castiglioni
Secondo
;
J. Rzemieniec;B. Mercuriali;P. Gelosa
Penultimo
;
L. Sironi
Ultimo
2024

Abstract

Preclinical and clinical data indicate that the 5-lipoxygenase pathway becomes activated in cardiovascular diseases suggesting an important role of CysLTs in atherosclerosis and in its ischemic complications. This study aims to investigate the effects of montelukast, a CysLTR-1 antagonist, in a mouse model of myocardial infarction (MI). C57BL/6N female mice were subjected to coronary artery ligation and received montelukast (10 mg/kg/day, intraperitoneal) or vehicle. Montelukast exerted beneficial effects in the infarcted area, decreasing mRNA expression of inflammatory genes, such Il1β and Ccl2 (p < 0.05), at 48 h after MI, and reducing infarct size and preventing ischemic wall thinning (p < 0.05) at 4 weeks. Furthermore, montelukast counteracted maladaptive remodelling of whole heart. Indeed, montelukast reduced LV mass (p < 0.05) and remote wall thickening (p < 0.05), and improved cardiac pumping function, as evidenced by increased global ejection fraction (p < 0.01), and regional contractility in infarcted (p < 0.05) and in remote non-infarcted (p < 0.05) myocardium. Finally, montelukast prevented cardiomyocytes hypertrophy (p < 0.05) in remote myocardium, reducing the phosphorylation of GSK3β, a regulator of hypertrophic pathway (p < 0.05). Our data strongly demonstrate the ability of montelukast to contrast the MI-induced maladaptive conditions, thus sustaining cardiac contractility. The results provide evidences for montelukast "repurposing" in cardiovascular diseases and in particular in myocardial infarction.
Settore BIO/14 - Farmacologia
9-feb-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
Muluhie et al_Scientific Rep 2024.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.88 MB
Formato Adobe PDF
3.88 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1038635
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact