OBJECTIVE - The activation of valve interstitial cells (VICs) toward an osteogenic phenotype characterizes aortic valve sclerosis, the early asymptomatic phase of calcific aortic valve disease. Osteopontin is a phosphorylated acidic glycoprotein that accumulates within the aortic leaflets and labels VIC activation even in noncalcified asymptomatic patients. Despite this, osteopontin protects VICs against in vitro calcification. Here, we hypothesize that the specific interaction of osteopontin with CD44v6, and the related intracellular pathway, prevents calcium deposition in human-derived VICs from patients with aortic valve sclerosis. APPROACH AND RESULTS - On informed consent, 23 patients and 4 controls were enrolled through the cardiac surgery and heart transplant programs. Human aortic valves and VICs were tested for osteogenic transdifferentiation, ex vivo and in vitro. Osteopontin-CD44 interaction was analyzed using proximity ligation assay and the signaling pathways investigated. A murine model based on angiotensin II infusion was used to mimic early pathological remodeling of the aortic valves. We report osteopontin-CD44 functional interaction as a hallmark of early stages of calcific aortic valve disease. We demonstrated that osteopontin-CD44 interaction mediates calcium deposition via phospho-Akt in VICs from patients with noncalcified aortic valve sclerosis. Finally, microdissection analysis of murine valves shows increased cusp thickness in angiotensin II-treated mice versus saline infused along with colocalization of osteopontin and CD44 as seen in human lesions. CONCLUSIONS - Here, we unveil a specific protein-protein association and intracellular signaling mechanisms of osteopontin. Understanding the molecular mechanisms of early VIC activation and calcium deposition in asymptomatic stage of calcific aortic valve disease could open new prospective for diagnosis and therapeutic intervention.

Osteopontin-CD44v6 interaction mediates calcium deposition via phospho-akt in valve interstitial cells from patients with noncalcified aortic valve sclerosis / P. Poggio, E. Branchetti, J.B. Grau, E.K. Lai, R.C. Gorman, J.H. Gorman, M.S. Sacks, J.E. Bavaria, G. Ferrari. - In: ARTERIOSCLEROSIS, THROMBOSIS, AND VASCULAR BIOLOGY. - ISSN 1079-5642. - 34:9(2014), pp. 2086-2094. [10.1161/ATVBAHA.113.303017]

Osteopontin-CD44v6 interaction mediates calcium deposition via phospho-akt in valve interstitial cells from patients with noncalcified aortic valve sclerosis

P. Poggio
Primo
;
E. Branchetti;
2014

Abstract

OBJECTIVE - The activation of valve interstitial cells (VICs) toward an osteogenic phenotype characterizes aortic valve sclerosis, the early asymptomatic phase of calcific aortic valve disease. Osteopontin is a phosphorylated acidic glycoprotein that accumulates within the aortic leaflets and labels VIC activation even in noncalcified asymptomatic patients. Despite this, osteopontin protects VICs against in vitro calcification. Here, we hypothesize that the specific interaction of osteopontin with CD44v6, and the related intracellular pathway, prevents calcium deposition in human-derived VICs from patients with aortic valve sclerosis. APPROACH AND RESULTS - On informed consent, 23 patients and 4 controls were enrolled through the cardiac surgery and heart transplant programs. Human aortic valves and VICs were tested for osteogenic transdifferentiation, ex vivo and in vitro. Osteopontin-CD44 interaction was analyzed using proximity ligation assay and the signaling pathways investigated. A murine model based on angiotensin II infusion was used to mimic early pathological remodeling of the aortic valves. We report osteopontin-CD44 functional interaction as a hallmark of early stages of calcific aortic valve disease. We demonstrated that osteopontin-CD44 interaction mediates calcium deposition via phospho-Akt in VICs from patients with noncalcified aortic valve sclerosis. Finally, microdissection analysis of murine valves shows increased cusp thickness in angiotensin II-treated mice versus saline infused along with colocalization of osteopontin and CD44 as seen in human lesions. CONCLUSIONS - Here, we unveil a specific protein-protein association and intracellular signaling mechanisms of osteopontin. Understanding the molecular mechanisms of early VIC activation and calcium deposition in asymptomatic stage of calcific aortic valve disease could open new prospective for diagnosis and therapeutic intervention.
aortic valve; osteopontin
Settore MED/50 - Scienze Tecniche Mediche Applicate
2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
poggio-et-al-2014-osteopontin-cd44v6-interaction-mediates-calcium-deposition-via-phospho-akt-in-valve-interstitial.pdf

accesso riservato

Descrizione: Research Article
Tipologia: Publisher's version/PDF
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1029229
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 42
social impact