Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are primarily activated by voltage and further modulated by cAMP. While cAMP binding alone does not open the channel, its presence facilitates the action of voltage, increasing channel open probability. Functional results indicate that the membrane-based voltage sensor domain (VSD) communicates with the cytosolic cyclic nucleotide-binding domain (CNBD), and vice-versa. Yet, a mechanistic explanation on how this could occur in structural terms is still lacking. In this review, we will discuss the recent advancement in understanding the molecular mechanisms connecting the VSD with the CNBD in the tetrameric organization of HCN channels unveiled by the 3D structures of HCN1 and HCN4. Data show that the HCN domain transmits cAMP signal to the VSD by bridging the cytosolic to the membrane domains. Furthermore, a metal ion coordination site connects the C-linker to the S4-S5 linker in HCN4, further facilitating cAMP signal transmission to the VSD in this isoform.

Structural and functional approaches to studying cAMP regulation of HCN channels / A. Saponaro, G. Thiel, A. Moroni. - In: BIOCHEMICAL SOCIETY TRANSACTIONS. - ISSN 0300-5127. - 49:6(2021 Dec), pp. 2573-2579. [10.1042/BST20210290]

Structural and functional approaches to studying cAMP regulation of HCN channels

A. Saponaro
Primo
;
A. Moroni
Ultimo
2021

Abstract

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are primarily activated by voltage and further modulated by cAMP. While cAMP binding alone does not open the channel, its presence facilitates the action of voltage, increasing channel open probability. Functional results indicate that the membrane-based voltage sensor domain (VSD) communicates with the cytosolic cyclic nucleotide-binding domain (CNBD), and vice-versa. Yet, a mechanistic explanation on how this could occur in structural terms is still lacking. In this review, we will discuss the recent advancement in understanding the molecular mechanisms connecting the VSD with the CNBD in the tetrameric organization of HCN channels unveiled by the 3D structures of HCN1 and HCN4. Data show that the HCN domain transmits cAMP signal to the VSD by bridging the cytosolic to the membrane domains. Furthermore, a metal ion coordination site connects the C-linker to the S4-S5 linker in HCN4, further facilitating cAMP signal transmission to the VSD in this isoform.
Settore BIO/09 - Fisiologia
   Noninvasive Manipulation of Gating in Ion Channels
   noMAGIC
   EUROPEAN COMMISSION
   H2020
   695078
dic-2021
23-nov-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Biochemical Society Transactions_2021.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1026637
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact