Link prediction in Online Social Networks—OSNs—has been the focus of numerous studies in the machine learning community. A successful machine learning-based solution for this task needs to (i) leverage global and local properties of the graph structure surrounding links; (ii) leverage the content produced by OSN users; and (iii) allow their representations to change over time, as thousands of new links between users and new content like textual posts, comments, images and videos are created/uploaded every month. Current works have successfully leveraged the structural information but only a few have also taken into account the textual content and/or the dynamicity of network structure and node attributes. In this paper, we propose a methodology based on temporal graph neural networks to handle the challenges described above. To understand the impact of textual content on this task, we provide a novel pipeline to include textual information alongside the structural one with the usage of BERT language models, dense preprocessing layers, and an effective post-processing decoder. We conducted the evaluation on a novel dataset gathered from an emerging blockchain-based online social network, using a live-update setting that takes into account the evolving nature of data and models. The dataset serves as a useful testing ground for link prediction evaluation because it provides high-resolution temporal information on link creation and textual content, characteristics hard to find in current benchmark datasets. Our results show that temporal graph learning is a promising solution for dynamic link prediction with text. Indeed, combining textual features and dynamic Graph Neural Networks—GNNs—leads to the best performances over time. On average, the textual content can enhance the performance of a dynamic GNN by 3.1% and, as the collection of documents increases in size over time, help even models that do not consider the structural information of the network.

Temporal graph learning for dynamic link prediction with text in online social networks / M. Dileo, M. Zignani, S. Gaito. - In: MACHINE LEARNING. - ISSN 0885-6125. - (2023), pp. 1-20. [Epub ahead of print] [10.1007/s10994-023-06475-x]

Temporal graph learning for dynamic link prediction with text in online social networks

M. Dileo
Primo
;
M. Zignani
Penultimo
;
S. Gaito
Ultimo
2023

Abstract

Link prediction in Online Social Networks—OSNs—has been the focus of numerous studies in the machine learning community. A successful machine learning-based solution for this task needs to (i) leverage global and local properties of the graph structure surrounding links; (ii) leverage the content produced by OSN users; and (iii) allow their representations to change over time, as thousands of new links between users and new content like textual posts, comments, images and videos are created/uploaded every month. Current works have successfully leveraged the structural information but only a few have also taken into account the textual content and/or the dynamicity of network structure and node attributes. In this paper, we propose a methodology based on temporal graph neural networks to handle the challenges described above. To understand the impact of textual content on this task, we provide a novel pipeline to include textual information alongside the structural one with the usage of BERT language models, dense preprocessing layers, and an effective post-processing decoder. We conducted the evaluation on a novel dataset gathered from an emerging blockchain-based online social network, using a live-update setting that takes into account the evolving nature of data and models. The dataset serves as a useful testing ground for link prediction evaluation because it provides high-resolution temporal information on link creation and textual content, characteristics hard to find in current benchmark datasets. Our results show that temporal graph learning is a promising solution for dynamic link prediction with text. Indeed, combining textual features and dynamic Graph Neural Networks—GNNs—leads to the best performances over time. On average, the textual content can enhance the performance of a dynamic GNN by 3.1% and, as the collection of documents increases in size over time, help even models that do not consider the structural information of the network.
Dynamic graphs; Graph neural networks; Network analysis; Online social networks;
Settore INF/01 - Informatica
2023
29-nov-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
s10994-023-06475-x.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1024235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact