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Abstract
Link prediction in Online Social Networks—OSNs—has been the focus of numerous stud-
ies in the machine learning community. A successful machine learning-based solution for 
this task needs to (i) leverage global and local properties of the graph structure surrounding 
links; (ii) leverage the content produced by OSN users; and (iii) allow their representations 
to change over time, as thousands of new links between users and new content like tex-
tual posts, comments, images and videos are created/uploaded every month. Current works 
have successfully leveraged the structural information but only a few have also taken into 
account the textual content and/or the dynamicity of network structure and node attributes. 
In this paper, we propose a methodology based on temporal graph neural networks to han-
dle the challenges described above. To understand the impact of textual content on this 
task, we provide a novel pipeline to include textual information alongside the structural 
one with the usage of BERT language models, dense preprocessing layers, and an effective 
post-processing decoder. We conducted the evaluation on a novel dataset gathered from 
an emerging blockchain-based online social network, using a live-update setting that takes 
into account the evolving nature of data and models. The dataset serves as a useful testing 
ground for link prediction evaluation because it provides high-resolution temporal informa-
tion on link creation and textual content, characteristics hard to find in current benchmark 
datasets. Our results show that temporal graph learning is a promising solution for dynamic 
link prediction with text. Indeed, combining textual features and dynamic Graph Neural 
Networks—GNNs—leads to the best performances over time. On average, the textual con-
tent can enhance the performance of a dynamic GNN by 3.1% and, as the collection of 
documents increases in size over time, help even models that do not consider the structural 
information of the network.
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1 Introduction

Real-world networks such as traffic, citation, or social networks often evolve over time. 
To extract, learn, and make predictions from these dynamic networks the field of Tempo-
ral Graph Learning has gained increasing attention from the ML community. In particu-
lar, the problem of dynamic link prediction is meaningful for solving numerous issues in 
many application domains such as fraud detection or recommender systems. Alongside the 
structural information, i.e. the graph, many dynamic networks can also provide attributes 
describing the links or the nodes of the network, and even these attributes may change over 
time.

The combination of multi-modal interactions, networked data, and dynamicity reaches 
its highest expression in online social networks—OSNs—where thousands of new links 
between users are created every month, thanks to different mechanisms that characterize 
the behaviors of people within society, such as the balance theory or the homophily prin-
ciple (Khanam et  al., 2022). Moreover, users typically also produce content like textual 
content—posts and comments to posts—describing their activities, hobbies, or opinions 
which may change over time (Monti et al., 2013). Hence, when it comes down to dynamic 
link prediction in OSNs using textual information, a successful machine learning-based 
solution needs (i) to leverage global and local properties of the graph structure surrounding 
links; (ii) to include the textual content produced by OSN accounts; and (iii) to allow their 
representations to change over time dynamically. Finally, both the training and evaluation 
settings of the problem must take into account the evolving nature of data and models.

However, nowadays solutions and methods lack at least one of the described require-
ments. As for the second requirement—textual content—only a few works consider addi-
tional contextual information such as textual content alongside the traditional structural 
one. Therefore, our knowledge of how text affects link creation is currently restricted. One 
of the main reasons is that it is hard to obtain appropriate data for the task: current research 
lacks high-resolution temporal annotated data on network growth and/or on textual infor-
mation. This a crucial problem to cope with as the information acquired from the text may 
enhance prediction and provide insight into the mechanisms guiding the link creation pro-
cess. In fact, the text is fundamental in OSNs since it is one of the strongest drivers for 
user involvement, and content advertisements are the primary source of income for these 
platforms. As for the third requirement—handling changes over time—Graph Neural Net-
works (GNNs) are becoming a very promising deep learning model for graph-structured 
data and they are currently successfully applied to many static real-world attributed graphs; 
however, despite various GNNs proposed for dynamic graphs (Gupta & Bedathur, 2022), a 
vast majority of these approaches have limitations in model design, evaluation settings, and 
training strategies (You et al., 2022).

Hence, in this work, we performed future link prediction with textual information on a 
temporal attributed network using a dynamic GNN model. We adopted the ROLAND (You 
et al., 2022) graph learning framework for dynamic graphs which helps to repurpose any 
static GNN to a dynamic setting and introduces new training and evaluation procedures 
suited for learning from dynamic networks. Starting from this kind of temporal and hetero-
geneous data, in this work, we define a methodology to include text information to perform 
future link prediction on multiple following graph snapshots. Nodes—users—in the graph 
are characterized by a set of textual features that capture the semantics of their content and 
the topics they talk about. Then, we investigate the impact of these textual features on the 
link prediction task in a dynamic setting, understanding (i) how using textual features can 
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enhance the performance on future link prediction tasks, (ii) which is a good strategy to 
update the textual representation; and highlight (iii) strengths and weaknesses of different 
GNN-based models.

We choose Steemit, a blockchain-based online social network, as a case study, since 
it makes it possible to retrieve high-resolution temporal data on social relationships and 
textual content, leading to the creation of an attributed temporal network. Specifically, we 
focused on and gathered temporal data about “follow” relationships between users and text 
content produced by users—posts and comments. By the nature of blockchains, data are 
publicly available, validated, and affordable by interfacing with the blockchain API. More-
over, each piece of information is also timestamped, since each blockchain block has a 
validation timestamp, and each block reports multifaceted interactions and content (social, 
economic, financial, and textual). In light of this, these data sources are fully equipped to 
handle the challenges and concerns related to modern techno-social networks and to pro-
vide a comprehensive and in-depth examination of users and network characteristics.

The outcome of the prediction task, resulting from the application of the above meth-
odology, shows that the combination of textual features and dynamic GNN leads to the 
best performances over time. Moreover, through an exhaustive comparison of different 
ROLAND-based models, we also provide insights on the importance of textual content 
snapshot by snapshot, as the collection of documents increases in size. We find a good 
compromise between the importance of past and current node embeddings in the dynamic 
representation of textual content by testing different embedding update-modules. Finally, 
we discuss potential extensions for this work.

We can summarize our main contributions as follows: (i) we propose a methodology to 
leverage topological and user-generated textual content from online social network data by 
learning both structural information and document embeddings to predict future “follow” 
links, introducing a novel model architecture based on the ROLAND framework, with the 
addition of an effective decoder for link prediction and dense pre-processing layers to fine-
tune the text embeddings obtained from a pre-trained language model; (ii) we train and 
evaluate temporal graph neural networks over the “follow” prediction task on a novel data-
set gathered from an emerging blockchain online social network, which offers high-reso-
lution temporal information, using a recently introduced live update protocol; and (iii) we 
investigate the role of textual content in learning from multiple following graph snapshots 
by analyzing different node embedding update strategies and baselines to highlight how 
textual content influences their performances.

The paper is organized as follows. Section 2 provides a brief introduction to the nature 
of blockchain-based online social networks and a review of works related to dynamic link 
prediction and link prediction with text. In Sect. 3 we describe the construction of the mul-
tiple following snapshot graphs, the graph learning framework for dynamic graphs, the 
model for predicting links, and how textual features are extracted. In Sect. 4 we provide a 
description of the dataset, while Sects. 5 and 6 report the main findings of link prediction 
and a discussion about strengths and weaknesses of the proposed approach.

2  Background

Dealing with the task of dynamic or future link prediction in online social networks within 
the framework of temporal graph learning involves methods from different research fields, 
especially when we also consider user-generated content and text. In the following, we 
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describe works related to the standard setting for dynamic link prediction focusing on solu-
tions based on graph neural networks for dynamic graphs. Then, we review the main meth-
ods of temporal graph learning, with a special focus on the integration of textual infor-
mation. We also discuss works integrating topological and content-based approaches for 
social network analysis. Finally, we summarize the main features of the platform our social 
data comes from, along with works dealing with blockchain-based online social networks.

Dynamic link prediction. The problem of dynamic link prediction is meaningful for 
solving numerous issues in many application domains such as fraud-detection (Bruss et al., 
2019), recommender systems (You et  al., 2019), or online social networks (Barracchia 
et al., 2022). Its main objective is to estimate network evolution by inferring the likelihood 
that pairs of nodes have to either form links or not in the future. It is also known as the 
future link prediction task. Kumar et al. (2020) reviewed several approaches to link pre-
diction from classical to recent network embedding and deep learning techniques. Graph 
Neural Networks (GNNs) are a family of deep learning models that represent cutting-edge 
technology to learn from dynamic networks. Although various GNNs have been proposed 
for dynamic graphs (Pareja et al., 2020; Zhao et al., 2020; Seo et al., 2018; Yu et al., 2018; 
Li et al., 2018), these approaches have limitations in model design, evaluation settings, and 
training strategies. In fact, most of the works do not incorporate state-of-the-art designs 
from static GNNs, and training and evaluation procedures, heavily influenced by static 
graph learning, are performed using a fixed train-test split strategy. To overcome these 
limitations, You et al. (2022) propose a graph learning framework that allows the repurpos-
ing of any static GNN to dynamic graphs and performs training and evaluation procedures 
in a live update setting. We adopt their framework in this work to benefit from its model 
design and training and evaluation strategies. In addition to the ROLAND model design, 
our model leverages an effective decoder for link predictison and two dense pre-processing 
layers for fine-tuning the document embedding representations obtained from a pre-trained 
language model.

Link prediction with text. Only a few studies have evaluated the role of textual node-
related data in enhancing performances in link prediction tasks. Among these works, 
Parimi and Caragea (2011) rely on users’ textual attributes to model user profile data, 
using Latent Dirichlet Allocation—LDA—to model topics; but here, link prediction is only 
based on the resulting topic distributions, and not on the network structure. Other works, 
such as Wang et  al. (2018), have improved prediction performance by fusing a network 
generated from users’ posts with the original “follow” network, but they do not consider 
content-based features. Xu et al. (2021) used unstructured text content from heterogeneous 
datasets (e.g. papers from DBLP) to obtain topic-aware node embedding representations 
with GNNs. Only recently, in the field of recommender systems, LMs and GNNs were 
combined to obtain knowledge-aware recommendations (Spillo et al., 2023). Overall, using 
text to make predictions seems to improve performance; however, all these methods have 
only been tested on static networks. Additionally, there is a lack of knowledge regarding 
the best strategies to employ text-based features. In this work, we cope with the latter prob-
lems using sentence encoders based on LMs, which represent the state-of-the-art on differ-
ent NLP tasks (Reimers & Gurevych, 2019), in combination with temporal graph neural 
networks (Longa et al., 2023), to analyze an evolving online social network in a recently 
proposed temporal training and evaluation setting.

Content-based social network analysis. Approaches integrating topological and content 
have also been successfully used in a few works dealing with different online social net-
work analysis applications. For instance, in Garimella et al. (2021), authors analyze brows-
ing histories of users leveraging both the link structure of online news networks and the 
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users’ explicit content choices by contributing to understanding polarization in online news 
consumption. In Villa et  al. (2021), they propose an approach based on the application 
of a community detection strategy to distinct topology—and content-aware representations 
of the COVID-19 conversation graph on Twitter to detect echo chambers. In Kumar et al. 
(2018), they exploit the Reddit hyperlink network and Word2vec-based user and subreddit 
embeddings for analyzing community interactions and conflicts on the platform.

Blockchain-based OSNs. By Blockchain-based Online Social Network (BOSN), we 
refer to a web application that (i) enables online interactions between accounts by provid-
ing a set of “social action”, such as following, commenting, and voting; and (ii) whose core 
functions are supported by an underlying blockchain that ensures the persistence and valid-
ity of the operations and stores each piece of information with a high-resolution timestamp. 
As every action is stored on a blockchain, these platforms provide a detailed data source 
of network activity, covering not only the social side but also the economic sphere; for 
example, cryptocurrency exchanges between users. In recent years, many different research 
fields have benefited from these large collections of temporal and heterogeneous data, 
which capture different aspects of the interactions among people and between people and 
platforms. Most of the research studies on BOSNs have been focused on Steemit since is 
one of the most widespread BOSN platforms and is considered a pioneer in the BOSNs 
ecosystem. The most relevant advancements and issues are illustrated in a few recent works 
(Guidi, 2021; Ba et al., 2022a, 2022b).

In Dileo et al. (2022) we applied state-of-the-art graph neural networks to evaluate the 
impact of textual content on link prediction in Blockchain-OSNs. We modeled Steemit as a 
temporal attributed graph and we showed that (a) GNNs outperform well-established meth-
ods such as logistic regression or ensemble methods; and (b) Prediction performance of 
GNNs can be enhanced using textual features as node attributes. Although the work has 
highlighted the impact of textual content on link prediction and on the network evolution 
as well, (i) it considers only a few text-based statistics and shallow features to obtain tex-
tual representations, without taking into account pre-trained deep learning language mod-
els that offer high-dimensional and semantic-based text embeddings; and (ii) it performs 
future link prediction on one future snapshot only without proposing a methodology to deal 
with multiple following snapshots. Here we extend this previous work by acting in both 
aforementioned directions.

3  Methodology

In online social networks, users post content for other users. If user A is interested in the 
content user B writes, A can start following user B to receive updates on her/his posts. 
Due to this mechanism, A can also see the post written by user C reshared by B and start 
to follow C, if interested. Alongside this information, we also have user-generated content, 
i.e. posts and comments on posts, that may impact the formation of “follow” links. Here, 
we aim to answer the following research questions: how do we handle dynamic textual and 
structural information to perform link prediction in online social networks? How do textual 
features impact future link prediction tasks on multiple following snapshots?

To answer these questions we propose a methodology based on the ROLAND graph 
learning framework for dynamic graphs (You et  al., 2022). In the next subsections, we 
will describe how we model the problem, the textual features used for link prediction, the 
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architecture of our model, and the ROLAND framework. Data used in this work refers to 
a high-resolution temporal annotated OSN with textual information associated with nodes.

3.1  Future link prediction and graphs construction

“Follow” links and text information can be modeled as an attributed temporal directed 
graph G = (V ,E, T ,X) , where V is the set of users, links (u, v, t) ∈ E denote a directed “fol-
low” link from user u to user v at time t (the time in which user u starts to follow user v), 
T is the set of timestamps, and X is a |V| × f  matrix of node attributes, with f the dimen-
sion of attribute vectors (Liu et al., 2023). Given a time interval [t0, t1] , the snapshot graph 
G[t0,t1]

 represents the directed graph, where for each link e = (u, v, t) ∈ E , we have that 
t ∈ [t0, t1] . For simplicity, since all the edges in a certain time interval are treated as they 
share the same timestamp, we use the notation Gt to denote a snapshot graph, where t is a 
time interval.

Given a snapshot graph Gt , the purpose of future link prediction is to predict which 
edges will appear at a successive graph snapshot Gt+1 . The problem can be treated as a 
binary classification task, where we assign label 1 if the link is predicted to form in the 
following time interval, 0 otherwise (Liben-Nowell & Kleinberg, 2003). Figure 1 shows an 
example of our setting for future link prediction on an online social network. We use infor-
mation up to time t to predict potential edges at time t + 1 . We adopt a transductive setting 
to predict new “follow” links between the nodes observed in the initial snapshot along all 
the future snapshots.

The main idea is to realize a sequence-based framework so that training and evaluation 
of the link prediction algorithms can be assessed on successively built datasets. To this 
aim, we rely on the experimental setting for temporal link prediction presented in Liu et al. 
(2016). Given a sequence of time intervals [t0, ..., tn]:

– Gt0
 is used to retrieve the list of edges, their relative nodes, and the textual features 

related to the collection of documents posted in time interval t0.
– Gti

 is obtained as an induced sub-graph constrained around the nodes of Gt0
 . This limita-

tion makes it possible to effectively understand how a graph and its connections evolve. 
Then, only the edges closed in ti and not in ti−1 are considered to form the positive set. 
Simultaneously, starting from the same seed of nodes, a set of randomly extracted non-
existing edges is considered to form the negative set. The final dataset results in the 

Fig. 1  Example of future link prediction in online social networks. We use information up to time t to pre-
dict potential edges at time t + 1
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combination of the positive and the negative sets; and for each item, a binary label y 
is added to indicate if that item is an existing edge or not. If i < n , where n is the num-
ber of snapshots, textual features related to the collection of documents posted in time 
interval ti are computed.

Selecting a subset of edges at random from the original complete set is standard practice to 
obtain a negative set (Pareja et al., 2020). Despite this strategy may lead to over-optimistic 
results, there are evaluation measures for which subsampling negatives from the test set has 
no negative effects (Yang et al., 2014).

3.2  Textual representation

We collect for each user the collection of posts and comments s/he wrote in a certain 
time interval to obtain textual information as node features. For instance, we were able to 
retrieve all the content written by a user during September 2016 and process them accord-
ing to the methodology described below to obtain a vector-based representation of the tex-
tual information s/he wrote and use it as attributes of the node representing the user in the 
“follow” graph.

We use a pre-trained BERT-based model to get Euclidean representations for the doc-
uments, as the BERT language model pre-training represents the state-of-the-art perfor-
mance on various NLP tasks like sentence classification or sentence-pair regression tasks 
(Devlin et  al., 2019). In particular, we choose Sentence-BERT (SBERT) (Reimers & 
Gurevych, 2019) as the text embedding model because it is able to derive semantically 
meaningful sentence embeddings. This means that semantically similar sentences will be 
close in vector space so it allows us to easily follow the homophily principle between users 
w.r.t. the textual content (Khanam et al., 2022).

An example of the architecture of an SBERT model is shown in Fig. 2. SBERT adds 
a pooling operation to the output of BERT to derive a fixed-sized sentence embedding. 
In our work, we use the average pooling operation. Then, in order to fine-tune BERT, it 
creates siamese and triplet networks (Schroff et al., 2015) to update the weights such that 
the produced sentence embeddings are semantically meaningful and can be compared by 
cosine similarity.

We use the all-MiniLM-L6-v2 SBERT model to obtain a vectorial representation 
for each post and comment written by a user. We choose this model because (i) is trained 
on all available training data (more than 1 billion training pairs), (ii) is designed as a gen-
eral purpose model, and (iii) is five times faster than the best SBERT model but still offers 
good quality.1

To obtain the initial features for each node, we average the document embeddings on 
each user’s collection. If a user has not written posts and comments during a certain time 
interval, its initial textual features will be a zero vector. Note that, as described in Sect. 4, 
no user has missing node features because, in the first time interval, they all have written at 
least one post or comment.

Formally, we summarize the procedure to obtain text embeddings as node features as 
follows. For each time interval t, we call D(u,t) the collection of documents (posts and com-
ments) posted by user u during time interval t. To obtain the initial node features X(u,t) of u 

1 https:// www. sbert. net/ docs/ pretr ained_ models. html

https://www.sbert.net/docs/pretrained_models.html
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at time t, we average its document embeddings, i.e. X(u,t) =
1

�D(u,t)�
∑

d∈D(u,t)
SBERT(d) using 

the element-wise sum.

3.3  The ROLAND framework

ROLAND You et al. (2022) is a graph representation learning system for building, train-
ing, and evaluating dynamic Graph Neural Networks. This subsection will summarize the 
main ideas behind this framework.

Graph Neural Networks Graph Neural Networks (GNNs) are deep learning models that 
work naturally with graph-structured data Wu et al. (2021). GNNs learn to map individual 
nodes to fixed-size real-valued vectors called embeddings. The learned embeddings sum-
marize the structural information of the network taking into consideration also the attrib-
utes of the nodes. Then, those vectorial representations can be used to solve different 
useful problems on graphs (e.g. link prediction). They generate a node v’s representation 
by aggregating neighbors’ features hu , where u ∈ N(v) (u’s neighborhood), and combin-
ing them with its features hv . Formally, we can use the matrix H(L) = {h(l)

v
}u∈V to denote 

the embedding for all the nodes after applying an L-layer GNN. The l-th layer of a GNN, 
H(l) = GNN

(l)(H(l−1)) , can be written as:

where h(l)
v

 is the node embedding for v ∈ V  after passing through l layers, h(0)
v

 is the initial 
representation for the node (i.e. its node features), m(l)

v
 is the message embedding, and N(v) 

is the direct neighbors of v. Different GNNs can have various definitions of message-pass-
ing (MSG) and aggregations (AGG) functions.

(1)
m(l)

u→v
= MSG

(l)
(
h(l−1)
u

, h(l−1)
v

)

h(l)
v
= AGG

(l)
({

m(l)
u→v

|u ∈ N(v)
}
, h(l−1)

v

)

Fig. 2  Example of an SBERT 
architecture with classifica-
tion objective function, e.g. for 
fine-tuning on a certain dataset. 
The two BERT networks have 
tied weights (siamese network 
structure)
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ROLAND model design Fig.  3 shows how to generalize a GNN to a dynamic setting 
following the ROLAND model design principle. The two main ROLAND innovations 
are viewing the node embeddings at different GNN layers as hierarchical node states, and 
then recurrently updating them over time through a customizable embedding module. We 
summarize the forward computation of a ROLAND-based model in Algorithm  1. The 
UPDATE function at line (4) can be any function that takes the previous and current node 
state at a certain layer and produces a new current node state mixing the two pieces of 
information. The DECODER function at line (6) takes any candidate pair of the current 
snapshot and emits in output a score s: the more likely the link between the two nodes 

Fig. 3  ROLAND model design principle. ROLAND extends any static GNN to dynamic graphs by insert-
ing embedding update modules that update hierarchical node states Ht over time
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exists, the higher the score is. For simplicity, the algorithm only reports the notation to 
compute the scores on the positive set.

Training and evaluation procedure We can summarize the training and evaluation pro-
cedure of a ROLAND-based model in the following steps: 

1. Split the dataset of the current snapshot into train and validation set.
2. Train the model on the train set optimizing the binary cross-entropy loss until the predic-

tion performance on the validation set does not get worse (early-stopping condition).
3. Compute the prediction performance on the next snapshot.
4. Repeat steps 1–3 from the first snapshot until the second last.
5. Compute the prediction performance of the model over time by averaging the perfor-

mance over the single snapshots.

Note that the model is not re-initialized after each snapshot, so the training procedure, after 
the first snapshot, is a fine-tuning step on the trained model. This kind of training and eval-
uation procedure is called live-update setting.

3.4  Model for dynamic link prediction with text

Figure 4 shows the pipeline of our methodology. Starting from the blockchain, we collect 
both “follow” links and documents written by users in a certain time interval. We process 
text with Sentence-BERT to produce Euclidean textual representation for the collection of 
documents posted by each user, as described in Sect. 3.2; then, we construct the sequence 
of snapshot graphs as described in Sect. 3.1, to finally feed our model using the live-update 
setting described in Sect. 3.3.

The architecture of our model includes: (i) two MLP layers to preprocess the node fea-
tures, i.e. the high-dimensional BERT representations, (ii) a dynamic two-layer GCN (Kipf 
& Welling, 2017) based on the ROLAND model design; and (iii) an HadamardMLP (Wang 

Algorithm 1  ROLAND GNN forward computation

Fig. 4  Pipeline of our methodology to perform dynamic link prediction with text on a blockchain online 
social network
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et al., 2022) as decoder, typically more effective than other decoders for link prediction. 
Table  1 resumes the dimensions of each deep learning layer. For the embedding update 
modules, we consider three simple yet effective methods: 

1. Learnable weighted average (lwa) Node embeddings Ĥ(l)
t  are updated using the formula 

 where � is a learnable parameter.
2. ConcatMLP Node embeddings are updated by a 1-layer MLP 

3. GRUCell Node embeddings are updated by a GRU cell (Chung et al., 2014) 

 where H(l)

t−1
 is the hidden state and Ĥ(l)

t  is the input for the GRU Cell.
The implementation of our model is written using PyTorch Geometric (Fey & Lenssen, 
2019) and is available on a GitHub repository.2

4  Dataset

In this section, we will briefly describe the features of the social platform Steemit more 
related to our work and introduce the dataset we collected to evaluate our methodology.

Users on Steemit have access to a wide range of operations that keep track of user 
activity with a three-second temporal precision and are retrievable through specific API. 
Data from June 3, 2016, through January 02, 2017, have been gathered through the API. 
The starting date corresponds to when the “follow” operation has been made available on 
Steemit.

We considered two types of information: (a) the “follow” relationships, available in the 
custom_json transactions; and (b) posts, comments, and tags, available in the com-
ment transactions. Overall, we processed 1,273,657 “follow” operations and 2,122,163 
documents. To produce the sequence of attributed graphs, the dataset was processed in 
accordance with the technique described in Sect. 3.

H
(l)
t = 𝜏 ∗ H

(l)

t−1
+ (1 − 𝜏) ∗ Ĥ

(l)
t

H
(l)
t = MLP

(
CONCAT

(
H

(l)

t−1
, Ĥ

(l)
t

))

H
(l)
t = GRU

(
H

(l)

t−1
, Ĥ

(l)
t

)

Table 1  Number of input and 
output channels for each deep 
learning layer in our model

Layer in_channels out_channels

MLP1 384 256
MLP2 256 128
GCN1 128 64
GCN2 64 32
HadamardMLP 32 2

2 https:// github. com/ manuel- dileo/ dynam ic- gnn

https://github.com/manuel-dileo/dynamic-gnn
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As the network has just started to grow, we used the first three months of data as the 
initial train snapshot to have enough nodes on which to predict new links and a sufficient 
number of edges to learn the networked structure. The first snapshot has 20,849 nodes and 
138,604 edges. Then, we used a monthly snapshot frequency.

Table  2 provides summary statistics of the dataset snapshots. For each snapshot, we 
reported the number of new edges, documents (posts and comments), the average number 
of documents written by authors, i.e. users that have written at least one comment or post, 
and the authors’ rate, i.e. the number of authors over the number of nodes. We observe 
that the number of new edges slightly decreases over time but it remains in the tens of 
thousands, while the number of authors drastically plums. However, the average number of 
documents written by authors remains more or less the same and the initial authors’ rate is 
equal to 100% , therefore no node has started with missing features.

Figure 5 shows the distributions of contents length produced in September and Decem-
ber 2016, i.e. the first and last test snapshots. Despite the number of documents and authors 
decreasing over time, the two distributions seem quite similar, so users’ effort to write posts 
and comments on Steemit does not decrease and the new textual content cannot be ignored.

Table 2  Summary of dataset statistics

Snapshot New edges Num. of documents Avg. docs per 
author

Authors’ rate (%)

Jun–Aug – 1,083,390 41.35 100
September 52,842 321,119 36.63 42
October 29,966 249,264 37.9 31.5
November 19,855 226.717 41.28 26.3
December 18,378 241,677 43.27 26.8

Fig. 5  Distributions of contents length produced in September (red histogram) and December (light blue 
histogram) 2016. The users’ effort to write posts and comments is quite similar (Color figure online)
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Lastly, over 85% of the contents are written in English,3 so the production of content is 
almost monolingual.

5  Experiments

In this section, we describe the experimental evaluation of temporal graph learning mod-
els for dynamic “follow” link prediction in a novel blockchain-based online social net-
work, i.e. Steemit. Specifically, we detail the evaluation setting as well as other alternative 
approaches and architectures. We delve into the analysis of the experimental evaluation 
results, emphasizing the optimal combination of modules within the overarching architec-
ture. The evaluation has highlighted that the integration of content-based features within a 
temporal graph learning framework can enhance performance when dealing with the link 
prediction task. Finally, code, data, and supplementary information about the experiments 
can be found in our GitHub repository.4

5.1  Experimental Setup

Task. We evaluate our model based on the ROLAND framework over the future link pre-
diction task. At each time t, the model utilizes information accumulated up to time t to pre-
dict edges in snapshot t + 1 . We use the area under the precision-recall curve (AUPRC) to 
evaluate candidate models, as suggested in Yang et al. (2014) and adopted in prior works as 
well (Rossi et al., 2020). We perform random negative sampling5 to obtain the same num-
ber of positive and negative examples in the dataset. We consider the live-update train-test 
split method (You et al., 2022), which evaluates model performance over all the available 
snapshots. We randomly choose 25% of edges in each snapshot to construct the validation 
set and determine the early-stopping condition. We use Adam (Kingma & Ba, 2015) as the 
optimizer, conducting hyperparameter tuning via grid search over learning rate and weight 
decay, testing orders of magnitudes from 10−1 up to 10−5 . We run all the experiments with 
3 different random seeds, reporting the average result and standard deviation for each 
method, as in You et al. (2022). Baselines. We evaluate our model using lwa, ConcatMLP 
and GruCell embedding-update modules. We compare our method with five baselines: 

1. GCN A GCN model (Kipf & Welling, 2017) with document embeddings as node fea-
tures. GCN is a deep learning model for attributed static graphs so it does not take into 
account the dynamicity of the network.

2. MLPText A MLP model on textual features. This model does not take into account the 
“follow” links between users and makes predictions based only on textual content.

3. ROLANDStruct A ROLAND-based model without textual features (i.e. a single con-
stant value equal for all the nodes as a feature) that makes predictions based only on the 
dynamic structure of the network.

3 Analysis done using the algorithm in Google’s language-detection library https:// code. google. com/ archi 
ve/p/ langu age- detec tion/
4 https:// github. com/ manuel- dileo/ dynam ic- gnn
5 We sampled negative edges in the dataset due to memory constraint.

https://code.google.com/archive/p/language-detection/
https://code.google.com/archive/p/language-detection/
https://github.com/manuel-dileo/dynamic-gnn
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4. ROLANDMLP MLP with hierarchical document embeddings update modules (i.e. a 
ROLAND-based model without network structure). As MLPText, it does not consider 
the structure of the “follow” graph but, on the contrary, it allows the textual representa-
tion to be updated over time.

5. DummyClassifier A dummy fuzzy classifier that emits in output a value v ∈ [0, 1] at 
random for each example.

Note that the ROLAND-based models are updated through fine-tuning over the snap-
shots, while GCN and MLPText are re-initialized on a new snapshot. We made this choice 
because we want to compare our model with solutions outside the temporal graph learning 
framework and typically used on static graphs.

5.2  Results

All the results will be presented in terms of AUPRC scores for future link prediction tasks 
over different snapshots (months from September ’16 up to December ’16) and over time, 
i.e. by averaging the AUPRC scores over the months. Table  3 shows the results of our 
model using learnable weighted average, ConcatMLP, or GRUCell as the embedding 
update module. The best performances are achieved using the ConcatMLP model because 
its final representation likely represents a good compromise between past and current node 
embeddings. The GRU Cell, instead, gives too much importance to the past representation, 
as the lwa update module achieves its best performance with small values of � . However, 
lwa possibly suffers from being too simple as an aggregation method.

Table 3  AUPRC of ROLAND-based models for dynamic link prediction with textual features over different 
snapshots (months from September 2016 to December 2016) and over time using the learnable weighted 
average (lwa), ConcatMLP (MLP), GRUCell (GRU) as embedding updated modules

The best performances are achieved using the ConcatMLP model

Month/model LWA MLP GRU 

September16 0.897 ± 0.008 0.915 ± 0.002 0.915 ± 0.002

October16 0.899 ± 0.007 0.906 ± 0.005 0.900 ± 0.001

November16 0.854 ± 0.009 0.868 ± 0.006 0.844 ± 0.003

December16 0.820 ± 0.032 0.862 ± 0.009 0.834 ± 0.009

Over time 0.867 ± 0.014 0.887 ± 0.003 0.873 ± 0.003

Table 4  AUPRC of no dynamic baselines models for link prediction over different snapshots (months from 
September 2016 to December 2016) and over time

Our model outperforms the others thanks to the fine-tuning and embedding update steps

Month/model Our model GCN MLPText Dummy

September16 0.915 ± 0.002 0.894 ± 0.015 0.642 ± 0.119 0.498 ± 0.002

October16 0.906 ± 0.005 0.434 ± 0.115 0.454 ± 0.075 0.500 ± 0.001

November16 0.868 ± 0.006 0.817 ± 0.042 0.566 ± 0.144 0.504 ± 0.002

December16 0.862 ± 0.009 0.815 ± 0.039 0.636 ± 0.141 0.505 ± 0.002

Over time 0.887 ± 0.003 0.741 ± 0.014 0.574 ± 0.066 0.502 ± 0.001
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Table 4 shows the results of GCN, MLPText, and DummyClassifier, which are the base-
lines designed outside the ROLAND framework (i.e. without node embedding updates and 
fine-tuning over time). Our model outperforms these three baselines. These results show 
the effectiveness of the model design principles behind the ROLAND framework on the 
future link prediction task.

Finally, Table 5 shows the results of ROLAND-based models for dynamic link predic-
tion using textual features and graph convolutions (our model), no node features (ROLAN-
DStruct), and no graph convolutions (ROLANDMLP). As described in Sect. 5.1, we recall 
that the ROLANDStruct model learns the structure of the graphs only, while ROLANDMLP 
is fed with the collection of documents only. The combination of textual features and 
dynamic GNN, implemented by our solution, leads to the best performances. The ROLAN-
DStruct model works well on the first two snapshots but its performance gets worse as 
the collection of documents increases in size, while an opposite trend has characterized 
the performances of ROLANDMLP. The two different behaviors show the importance of 
textual content on future link prediction on multiple following snapshots: after the first 
months of Steemit’s life, using textual information or not leads to a change in performance 
up to 10% even for neural networks designed for dynamic graphs.

5.3  Scalability and generality of the solution

The proposed solution is general in nature and can be applied to make future link predic-
tions on every kind of social platform that offers high-resolution temporal networked and 
user-generated textual data. To this aim, we run our framework on another BOSN dataset. 
Specifically, we focus on the financial layer of Steemit, gathering the economic transactions 
between the users and their textual content over one year and a half period. The period 
starts on June 3, 2016, and ends on December 31, 2017. The first six months are used as 
the initial training snapshot while the remaining year is divided into two-week snapshots. 
Overall, we process 274,  872 transaction operations and 241,  677 comment operations, 
obtaining a graph with 14, 814 nodes and 106, 614 edges over 26 snapshots. We report the 
results of our model snapshot-by-snapshot in Fig. 6. Over time, the average performance of 
our model is an AUPRC score of 0.893, which is in line with the results presented on the 
“follow” link prediction tasks.

These experiments show also the scalability of our solution with more than four graph 
snapshots, as in the case of “follow” links. We run our experiments on NVIDIA Corpora-
tion GP107GL [Quadro P400]. The training procedure of one configuration of our model 
on the financial layer takes about 5 min.

Table 5  AUPRC of ROLAND-
based baselines models for 
link prediction over different 
snapshots (months from 
September 2016 to December 
2016) and over time

The combination of textual features and dynamic GNN leads to the 
best performances

Month/model Our model ROLANDStruct ROLANDMLP

September16 0.915 ± 0.002 0.908 ± 0.016 0.611 ± 0.060

October16 0.906 ± 0.005 0.903 ± 0.008 0.671 ± 0.094

November16 0.868 ± 0.006 0.853 ± 0.006 0.787 ± 0.088

December16 0.862 ± 0.009 0.821 ± 0.020 0.802 ± 0.048

Over time 0.887 ± 0.003 0.871 ± 0.012 0.718 ± 0.065
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6  Discussion

In this work, we used temporal graph learning to investigate the role of textual information 
on link formation on a dynamic network, an important task as text could improve predic-
tion and give insight into the link formation process. To this end, we performed future link 
prediction with text on a temporal attributed network. We relied on Steemit, a blockchain-
based online social network, that allows the retrieval of validated high-resolution temporal 
information. We provided a methodology based on the ROLAND graph learning frame-
work for dynamic graphs including how to obtain user textual features using a pre-trained 
BERT-based language model. We evaluated our model on the first 6 months of Steemit, 
splitting them into monthly following graph snapshots.

We showed that the combination of textual features and dynamic GNN leads to the best 
performances over time. This means that, in general, the best results are achieved using 
both structural and textual information, allowing their representation to be updated along 
the different snapshots. The performance gain of using textual content compared to a 
ROLAND-based model without node features increases over time and, on average, text 
features can enhance the performance by 3.1%.

We also investigated three simple yet effective methods to perform the update of node 
embeddings. The best embedding update module, among the ones considered, is the 
ConcatMLP model because its final representation likely represents a good compromise 
between past and current node embeddings. The GRU Cell, instead, gives too much impor-
tance to the past representation, whereas the learnable weighted average update achieves 
better performance with small values of �.

Lastly, we exhibited the role of textual content on multiple following snapshots. A 
dynamic model that does not use textual information works well on the first two snap-
shots but its performance gets worse as the collection of documents increases in size. Most 
importantly, we can observe the opposite trend for a dynamic model that uses text data 
only.

In general, temporal graph learning is a promising solution for dynamic link predic-
tion with text. However, it is a framework that is still relatively under-explored and heavily 

Fig. 6  Performances of our 
temporal graph neural network 
model for the transaction predic-
tion task, an instance of the 
future link prediction, over the 
two-week snapshots of Steemit 
data, in terms of AUPRC
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influenced by static graph learning. For example, the evaluation of the link prediction 
task on dynamic graphs involves random negative edge sampling which can lead to quite 
optimistic results. Further work is needed to construct “hard” negative sets, especially on 
Online Social Networks where edges that appeared in previous snapshots remain closed in 
the current time interval.

Future works will cope with the weaknesses of the temporal graph learning frame-
work. In addition, we plan to propose a methodology that works with heterogeneous and 
dynamic graphs in inductive settings. Finally, we want to analyze how the decisions made 
by dynamic graph neural networks can be explained and if the model can also give us a 
better understanding of the evolution of the network being studied.
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