In this study the combined effect of mechanical comminution and pulsed electric fields (PEF) treatments on both cell disintegration and extractability of phenolic compounds during aqueous extraction from artichoke external bracts, was investigated. Different-sized bract discs were treated with varying PEF conditions, namely 0.5–5 kV/cm of electric field strength (E), and 1–20 kJ/kg of total specific energy input (WT). The cell disintegration index (Zp) of bract tissues, as well as the total phenolic content (TPC) and antioxidant activity (FRAP) of the extracts, were assessed. The results showed that increasing the comminution process intensity led to greater cell disintegration, resulting in a peak extraction yield of phenolic compounds (17.61 ± 1.24 mgGAE/100 g FW) achieved with the smallest sample size. Moreover, the application of PEF treatment further increased the Zp value of the bract tissues in a size-dependent manner. The greater the sample size, the stronger the PEF efficiency. Coherently, under optimized PEF conditions (E = 3 kV/cm, WT = 5 kJ/kg), the extracts exhibited higher TPC (+112–361%) and FRAP values (+83–836 %) as compared to the control samples after 120 min of diffusion. The extraction rate of phenolic compounds increased when the comminution degree was increased for both untreated and PEF-treated samples, and this was successfully predicted using Peleg's model. These findings suggest that PEF can be a viable alternative to energy-intensive comminution pretreatment, thus enhancing the extraction of phenolic compounds without requiring finely ground raw material handling.

Influence of mechanical comminution of raw materials and PEF treatment on the aqueous extraction of phenolic compounds from artichoke wastes / D. Carullo, S. Carpentieri, G. Ferrari, G. Pataro. - In: JOURNAL OF FOOD ENGINEERING. - ISSN 0260-8774. - 369:(2024), pp. 111939.1-111939.11. [10.1016/j.jfoodeng.2024.111939]

Influence of mechanical comminution of raw materials and PEF treatment on the aqueous extraction of phenolic compounds from artichoke wastes

D. Carullo
Primo
;
2024

Abstract

In this study the combined effect of mechanical comminution and pulsed electric fields (PEF) treatments on both cell disintegration and extractability of phenolic compounds during aqueous extraction from artichoke external bracts, was investigated. Different-sized bract discs were treated with varying PEF conditions, namely 0.5–5 kV/cm of electric field strength (E), and 1–20 kJ/kg of total specific energy input (WT). The cell disintegration index (Zp) of bract tissues, as well as the total phenolic content (TPC) and antioxidant activity (FRAP) of the extracts, were assessed. The results showed that increasing the comminution process intensity led to greater cell disintegration, resulting in a peak extraction yield of phenolic compounds (17.61 ± 1.24 mgGAE/100 g FW) achieved with the smallest sample size. Moreover, the application of PEF treatment further increased the Zp value of the bract tissues in a size-dependent manner. The greater the sample size, the stronger the PEF efficiency. Coherently, under optimized PEF conditions (E = 3 kV/cm, WT = 5 kJ/kg), the extracts exhibited higher TPC (+112–361%) and FRAP values (+83–836 %) as compared to the control samples after 120 min of diffusion. The extraction rate of phenolic compounds increased when the comminution degree was increased for both untreated and PEF-treated samples, and this was successfully predicted using Peleg's model. These findings suggest that PEF can be a viable alternative to energy-intensive comminution pretreatment, thus enhancing the extraction of phenolic compounds without requiring finely ground raw material handling.
Artichoke wastes; Mechanical comminution; Pulsed electric field (PEF); Cell disintegration; Green extraction; Polyphenols
Settore AGR/15 - Scienze e Tecnologie Alimentari
2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0260877424000050-main.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 5.82 MB
Formato Adobe PDF
5.82 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1023108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact