We introduce the category of Heyting frames, those coherent frames L in which the compact elements form a Heyting subalgebra of L, and show that it is equivalent to the category of Heyting algebras and dually equivalent to the category of Esakia spaces. This provides a frame-theoretic perspective on Esakia duality for Heyting algebras. We also generalize these results to the setting of Brouwerian algebras and Brouwerian semilattices by introducing the corresponding categories of Brouwerian frames and extending the above equivalences and dual equivalences. This provides a frame-theoretic perspective on generalized Esakia duality for Brouwerian algebras and Brouwerian semilattices.
A frame-theoretic perspective on Esakia duality / G. Bezhanishvili, L. Carai, P.J. Morandi. - In: ALGEBRA UNIVERSALIS. - ISSN 0002-5240. - 84:4(2023), pp. 30.1-30.24. [10.1007/s00012-023-00827-3]
A frame-theoretic perspective on Esakia duality
L. Carai
Secondo
;
2023
Abstract
We introduce the category of Heyting frames, those coherent frames L in which the compact elements form a Heyting subalgebra of L, and show that it is equivalent to the category of Heyting algebras and dually equivalent to the category of Esakia spaces. This provides a frame-theoretic perspective on Esakia duality for Heyting algebras. We also generalize these results to the setting of Brouwerian algebras and Brouwerian semilattices by introducing the corresponding categories of Brouwerian frames and extending the above equivalences and dual equivalences. This provides a frame-theoretic perspective on generalized Esakia duality for Brouwerian algebras and Brouwerian semilattices.File | Dimensione | Formato | |
---|---|---|---|
Pontryagin-Esakia-2023-05-19.pdf
accesso aperto
Descrizione: Article - pre-print
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
439.29 kB
Formato
Adobe PDF
|
439.29 kB | Adobe PDF | Visualizza/Apri |
s00012-023-00827-3.pdf
accesso riservato
Descrizione: Article
Tipologia:
Publisher's version/PDF
Dimensione
487.47 kB
Formato
Adobe PDF
|
487.47 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.