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Abstract. We introduce the category of Heyting frames, those coherent
frames L in which the compact elements form a Heyting subalgebra of
L, and show that it is equivalent to the category of Heyting algebras
and dually equivalent to the category of Esakia spaces. This provides
a frame-theoretic perspective on Esakia duality for Heyting algebras.
We also generalize these results to the setting of Brouwerian algebras
and Brouwerian semilattices by introducing the corresponding categories
of Brouwerian frames and extending the above equivalences and dual
equivalences. This provides a frame-theoretic perspective on generalized
Esakia duality for Brouwerian algebras and Brouwerian semilattices.

Mathematics Subject Classification. 06D20, 06D22, 18F70, 06E15.

Keywords. Heyting algebra, Esakia duality, coherent frame, algebraic
frame, Brouwerian algebra, Brouwerian semilattice.

1. Introduction

In the early 1970s, two important duality theorems were established, by
Priestley [22, 23] for bounded distributive lattices and by Esakia [11] for
Heyting algebras. In both cases, the dual structures were special compact
ordered spaces, which became known as Priestley spaces and Esakia spaces,
respectively. As was shown by Cornish [9], Priestley duality is closely related
to Stone duality for bounded distributive lattices [26]. Since Stone duals
are spectral spaces, this opens the door for a frame-theoretic approach to
Priestley duality. Indeed, the category DL of bounded distributive lattices
is equivalent to the category CohFrm of coherent frames, which are exactly
the frames of open subsets of spectral spaces [16, p. 65]. By [9], the category
of spectral spaces is isomorphic to the category PS of Priestley spaces. We
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thus obtain the following diagram connecting distributive lattices, coherent
frames, and Priestley spaces. The arrow between DL and CohFrm represents
an equivalence, the other two dual equivalences, and the diagram commutes
up to natural isomorphism (see Section 2 for details).

DL CohFrm

PS

Since Esakia duality is a restricted version of Priestley duality, it is
natural to provide a frame-theoretic approach to it that is similar to the above
approach to Priestley duality. For this purpose, we introduce a subclass of
coherent frames, which we term Heyting frames or simply H-frames. To justify
the definition, we recall that a frame L is coherent if the set K(L) of compact
elements of L is a bounded sublattice of L that join-generates L. Since every
frame is a Heyting algebra, we define L to be an H-frame if in additionK(L) is
a Heyting subalgebra of L. We show that the above correspondence between
bounded distributive lattices, coherent frames, and Priestley spaces restricts
to the same correspondence between Heyting algebras, H-frames, and Esakia
spaces.

There are various natural morphisms α : L → M to consider between
two H-frames. If we consider coherent frame homomorphisms (those frame
homomorphisms that send compact elements to compact elements), the re-
sulting category is a full subcategory of CohFrm. But such morphisms don’t
take into account Heyting implication. Thus, we also consider those coherent
frame homomorphisms that preserve implication on K(L) as well as those
that preserve implication on the entire L. In addition, we consider complete
lattice homomorphisms as well as complete Heyting homomorphisms. This
results in various categories of H-frames. For each we describe the correspond-
ing categories of Esakia spaces and Heyting algebras. This yields the desired
frame-theoretic approach to Esakia duality, with various natural morphisms
at play.

We also provide a frame-theoretic approach to generalized Esakia du-
ality for Brouwerian algebras and Brouwerian semilattices. We recall that
Brouwerian algebras generalize Heyting algebras by dropping the bottom el-
ement from the signature, and that Brouwerian semilattices are a further
generalization that also drop the join from the signature (see, e.g., [17, 18]).
The dual spaces of Brouwerian algebras are pointed Esakia spaces [5], and
those of Brouwerian semilattices are pointed generalized Esakia spaces [2].

In order to extend the notion of an H-frame, instead of coherent frames
we work with algebraic and arithmetic frames (also known as M-frames).
For compact elements of an algebraic frame L to form a Brouwerian semi-
lattice, we need to work with the dual order on K(L). We thus define an
algebraic frame L to be a Brouwerian frame provided the dual K(L)d is a
Brouwerian semilattice. Since implication on K(L)d becomes co-implication
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on K(L), it no longer makes sense to talk about K(L)d being a Brouwerian
sub-semilattice of L since co-implication may not exist on L.

We show that Brouwerian frames play the same role in generalized
Esakia duality for Brouwerian semilattices as H-frames play in Esakia du-
ality, and that a similar role is played by Brouwerian arithmetic frames for
Brouwerian algebras and pointed Esakia spaces. We conclude the article by
discussing how the results about H-frames are related to the corresponding
results about Brouwerian frames.

2. Preliminaries

We start by briefly describing Priestley duality [22, 23]. Let X be a poset.
For S ⊆ X, we let

↑S = {x ∈ X : s ≤ x for some s ∈ S}
and

↓S = {x ∈ X : x ≤ s for some s ∈ S}.
If S = {s} is a singleton, we simply write ↑s and ↓s. We call S an upset if
↑S = S and a downset if ↓S = S. A Priestley space is a poset X equipped
with a compact topology such that the Priestley separation axiom holds: If
x ̸≤ y, then there is a clopen upset U such that x ∈ U and y /∈ U . A Priestley
morphism is a continuous order-preserving map. Let PS be the category of
Priestley spaces and Priestley morphisms. Let also DL be the category of
bounded distributive lattices and bounded lattice homomorphisms.

Theorem 2.1 (Priestley duality). DL is dually equivalent to PS.

The contravariant functors establishing Priestley duality are constructed
as follows. For a Priestley spaceX, let ClopUp(X) be the bounded distributive
lattice of clopen upsets of X. The contravariant functor ClopUp : PS → DL
sends X ∈ PS to ClopUp(X) and a PS-morphism f : X → Y to the bounded
lattice homomorphism f−1 : ClopUp(Y ) → ClopUp(X). For A ∈ DL let XA

be the set of prime filters of A ordered by inclusion and equipped with the
topology whose basis is {φ(a) \ φ(b) : a, b ∈ A}, where φ : A → ℘(XA) is the
Stone map φ(a) = {x ∈ XA : a ∈ x}. Then XA is a Priestley space and the
contravariant functor pf : DL → PS sends A ∈ DL to XA and a DL-morphism
h : A → B to h−1 : XB → XA.

Esakia duality [11] is a restricted version of Priestley duality. We recall
that an Esakia space is a Priestley space X in which ↓U is clopen for each
clopen U . An Esakia morphism is a continuous map f : X → Y satisfying
↓f−1(y) = f−1(↓y) for each y ∈ Y . Maps f : X → Y between posets satisfy-
ing the latter condition are often called p-morphisms or bounded morphisms.

Let ES be the category of Esakia spaces and Esakia morphisms. We also
recall that a Heyting algebra is a bounded distributive lattice A such that ∧
has a residual → satisfying a ∧ c ≤ b iff c ≤ a → b for all a, b, c ∈ A. The
operation → is often referred to as implication. Let HA be the category of
Heyting algebras and Heyting algebra homomorphisms.
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Theorem 2.2 (Esakia duality). HA is dually equivalent to ES.

Note that HA is a non-full subcategory of DL, ES is a non-full subcate-
gory of PS, and Esakia duality is established by restricting the contravariant
functors pf and ClopUp establishing Priestley duality.

The following lemma is well known in Esakia duality and will be used
subsequently (see, e.g., [10, Theorems 4.2 and 4.3]).

Lemma 2.3.

(1) A Priestley space X is an Esakia space iff ClopUp(X) is a Heyting
algebra, in which case the implication of U, V ∈ ClopUp(X) is calculated
by U → V = X \ ↓(U \ V ) = {x ∈ X : ↑x ∩ U ⊆ V }.

(2) Let X,Y be Esakia spaces and f : X → Y a PS-morphism. The following
conditions are equivalent:
(a) f is an ES-morphism.
(b) f−1(↓U) = ↓f−1(U) for each clopen subset U of Y .
(c) f−1 is a Heyting homomorphism.

We recall (see, e.g., [21, p. 10]) that a frame is a complete lattice L
satisfying the infinite distributive law a ∧

∨
S =

∨
{a ∧ s : s ∈ S} for each

S ⊆ L. An element a ∈ L is compact if a ≤
∨
S implies a ≤

∨
T for some

finite T ⊆ S. Let K(L) be the set of compact elements of L. Then K(L) is a
join-subsemilattice of L. We say that L is algebraic if K(L) is join-dense in
L (that is, each element of L is a join of compact elements), and that L is
coherent if L is algebraic and in addition K(L) is a bounded sublattice of L.

A map α : L → M between frames is a frame homomorphism if α pre-
serves finite meets and arbitrary joins. Let AlgFrm be the category of algebraic
frames and frame homomorphisms that preserve compact elements (that is,
a ∈ K(L) implies α(a) ∈ K(M)). Let also CohFrm be the full subcategory of
AlgFrm consisting of coherent frames.

Theorem 2.4. [16, p. 65] DL is equivalent to CohFrm.

The functors establishing this equivalence are described as follows. The
functor J : DL → CohFrm sends A ∈ DL to the frame J (A) of ideals of A,
and a DL-morphism h : A → B to the CohFrm-morphism h∗ : J (A) → J (B)
given by h∗(I) = ↓h[I]. The functor K : CohFrm → DL sends L ∈ CohFrm
to its bounded sublattice K(L) and a CohFrm-morphism α : L → M to its
restriction to K(L).

Since frames are precisely complete Heyting algebras (see, e.g., [12,
p. 12]), the ideal frame of A ∈ DL is a Heyting algebra. We will use the
following description of implication on J (A).

Lemma 2.5. Let A ∈ DL. Then implication on J (A) is calculated by the
following formula

I → J = {a ∈ A : ↓a ∩ I ⊆ J} = {a ∈ A : a ∧ b ∈ J ∀b ∈ I}.

Proof. Since the second equality is straightforward, we only verify the first
equality. Set E = {a ∈ A : ↓a ∩ I ⊆ J}. Since A ∈ DL, it is easy to see that
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E ∈ J (A). We show that E = I → J . For this we must show that E is the
largest ideal of A satisfying I ∩E ⊆ J . To see that I ∩E ⊆ J , let a ∈ I ∩E.
Then a ∈ I and ↓a∩ I ⊆ J , so a ∈ J . Therefore, I ∩E ⊆ J . To see that E is
the largest such, let N ∈ J (A) with I ∩N ⊆ J . Suppose that a ∈ N . Then
↓a ∩ I ⊆ N ∩ I ⊆ J , so a ∈ E. Thus, N ⊆ E, and hence I → J = E. □

Since DL is equivalent to CohFrm and dually equivalent to PS, we obtain
that CohFrm is dually equivalent to PS. The contravariant functors establish-
ing this dual equivalence can be constructed as follows. Let X ∈ PS. Since the
frame of ideals of ClopUp(X) is isomorphic to the frame OpUp(X) of open
upsets of X (see, e.g., [24, p. 54] or [1, p. 385]), the contravariant functor
OpUp : PS → CohFrm sends X ∈ PS to OpUp(X) ∈ CohFrm and a PS-
morphism f : X → Y to the CohFrm-morphism f−1 : OpUp(Y ) → OpUp(X).

To describe the contravariant functor pt : CohFrm → PS, we recall (see,
e.g., [21, p. 13]) that a point of a frame L is a completely prime filter P (that
is, P is a filter such that

∨
S ∈ P implies S ∩ P ̸= ∅). Let pt(L) be the set

of points of L. For each a ∈ L let ζ(a) = {P ∈ pt(L) : a ∈ P}. It is well
known (see, e.g., [21, p. 15]) that τ = {ζ(a) : a ∈ L} is a topology on pt(L).
Let L ∈ CohFrm. Then (pt(L), τ) is a spectral space (see, e.g., [16, p. 65]),
and (pt(L), π,⊆) is the corresponding Priestley space, where π is the patch
topology of τ (see, e.g., [9]). The functor pt : CohFrm → PS sends L ∈ CohFrm
to the Priestley space (pt(L), π,⊆), and a CohFrm-morphism α : L → M to
α−1 : pt(M) → pt(L).

For L ∈ CohFrm the Priestley spaces (pt(L), π,⊆) and pf(K(L)) of
prime filters of K(L) are isomorphic in PS. This isomorphism is obtained
by sending each point P of L to P ∩K(L) and each prime filter F of K(L)
to its upset ↑F in L. We thus obtain the following well-known result, which
provides a frame-theoretic perspective on Priestley duality.

Theorem 2.6. There is an equivalence of categories between DL and CohFrm,
a dual equivalence between CohFrm and PS, and the following diagram com-
mutes up to natural isomorphism.

DL CohFrm

PS

J

pf K pt

ClopUp OpUp

Since Esakia duality is a restricted version of Priestley duality, it is
natural to restrict Theorem 2.6 to the category HA of Heyting algebras. Then
PS restricts to ES. In the next section we will introduce the category HFrm
of H-frames and show that it plays the same role for HA and ES as CohFrm
plays for DL and PS.

3. Heyting frames

Definition 3.1. We call a coherent frame L a Heyting frame or simply an
H-frame if K(L) is a Heyting subalgebra of L.
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We point out that in the definition above, it is sufficient to assume that
L is algebraic since K(L) being a Heyting subalgebra implies that K(L) is a
bounded sublattice of L.

Theorem 3.2. Let L be a coherent frame. Then L is an H-frame iff the bounded
sublattice K(L) of L is a Heyting algebra.

Proof. The left-to-right implication is obvious. For the right-to-left implica-
tion, let → be the implication on L. Since the bounded sublattice K(L) is
a Heyting algebra, it has an implication →′. It is sufficient to show that
a → b = a →′ b for each a, b ∈ K(L). Because a ∧ (a →′ b) ≤ b, we have
a →′ b ≤ a → b. To see the reverse inequality, since L is coherent, it is
algebraic, and so a → b =

∨
{k ∈ K(L) : k ≤ a → b}. Let k ∈ K(L) with

k ≤ a → b. Because a ∧ (a → b) ≤ b, we have a ∧ k ≤ b, so k ≤ a →′ b.
Thus, a → b ≤ a →′ b, and hence equality holds. Consequently, L is an
H-frame. □

Since each A ∈ DL is isomorphic to K(J (A)), the following is an
immediate consequence of Theorem 3.2.

Corollary 3.3. Let A ∈ DL. Then A is a Heyting algebra iff J (A) is an
H-frame.

We next give a dual characterization of H-frames.

Theorem 3.4.

(1) If X ∈ PS, then X is an Esakia space iff OpUp(X) is an H-frame.
(2) If L ∈ CohFrm, then L is an H-frame iff pt(L) is an Esakia space.

Proof. (1) Let X ∈ PS. By Lemma 2.3(1), X is an Esakia space iff ClopUp(X)
is a Heyting algebra. Since ClopUp(X) is the set of compact elements of the
coherent frame OpUp(X), it follows from Theorem 3.2 that X is an Esakia
space iff OpUp(X) is an H-frame.

(2) Let L ∈ CohFrm. Dualizing Lemma 2.3(1), we have that A ∈ DL
is a Heyting algebra iff pf(A) is an Esakia space. Thus, K(L) is a Heyting
algebra iff pf(K(L)) is an Esakia space. Since pt(L) is order-homeomorphic
to pf(K(L)) (see the paragraph before Theorem 2.6), we conclude by Theo-
rem 3.2 that L is an H-frame iff pt(L) is an Esakia space. □

We thus obtain a one-to-one correspondence between Heyting algebras,
H-frames, and Esakia spaces. We next consider various morphisms between
H-frames.

Definition 3.5.

(1) Let HFrm− be the category of H-frames and coherent frame homomor-
phisms.

(2) Let HFrm be the category of H-frames and coherent frame homomor-
phisms which restrict to HA-morphisms on compact elements.

(3) Let HFrm+ be the category of H-frames and coherent frame homomor-
phisms preserving implication.
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(4) Let HFrm∗ be the category of H-frames and complete lattice homomor-
phisms preserving compact elements.

(5) Let HFrm† be the category of H-frames and complete Heyting homo-
morphisms preserving compact elements.

We point out that HFrm† = HFrm+ ∩HFrm∗. We clearly have the inclu-
sions of categories shown in Figure 1.

HFrm†

HFrm+

HFrm

HFrm∗

HFrm−

Figure 1. Inclusion of wide subcategories of HFrm−

Since all five categories have same objects, each inclusion is a wide
inclusion. That each inclusion in the diagram is proper, and that HFrm∗ is
incomparable with HFrm and HFrm+ will follow from a similar result for the
corresponding categories of Esakia spaces (see Example 3.10). To introduce
these categories, we recall (see, e.g., [14, p. 94]) that a constructible subset
of a topological space is a finite union of sets of the form U \ V where U, V
are open sets. We will be interested in constructible subsets of the spectral
topology of an Esakia space, or more generally of a Priestley space, which
motivates the following definition.

Definition 3.6. Let X be a Priestley space. We call a subset E of X an U-
constructible subset ofX if E is a constructible subset in the spectral topology
of open upsets of X.

Definition 3.7.

(1) Let ES− be the category of Esakia spaces and Priestley morphisms.
(2) Let ES be the category of Esakia spaces and Esakia morphisms.
(3) Let ES+ be the category of Esakia spaces and Priestley morphisms f

satisfying f−1(↓clE) = ↓clf−1(E) for each U-constructible subset E.
(4) Let ES∗ be the category of Esakia spaces and Priestley morphisms f

satisfying f−1(↓clD) = ↓clf−1(D) for each downset D.

(5) Let ES† be the category of Esakia spaces and maps that are both ES+

and ES∗-morphisms.

Remark 3.8.

(1) As with the categories of H-frames, we have that ES† = ES+ ∩ ES∗.



8 G. Bezhanishvili, L. Carai and P. J. Morandi

(2) Since ↓, cl, and f−1 preserve finite unions, in the definition of ES+ we
may assume that E = U \ V with U, V open upsets.

We thus obtain the wide inclusions of categories of Esakia spaces shown
in Figure 2. The only inclusion that is not obvious is that ES+ is a wide
subcategory of ES. We prove this in Lemma 3.9.

ES†

ES+

ES

ES∗

ES−

Figure 2. Inclusion of wide subcategories of ES−

Lemma 3.9. ES+ is a wide subcategory of ES.

Proof. Let f : X → Y be an ES+-morphism. To see that f is an ES-morphism,
by Lemma 2.3(2) it suffices to show that f−1(↓U) = ↓f−1(U) for each clopen
subset U of Y . Since {C \D : C,D ∈ ClopUp(Y )} is a basis for the topology
on Y and U is clopen, it is a finite union of Ui \ Vi with Ui, Vi ∈ ClopUp(Y ).
Therefore, U is U-constructible, and hence

f−1(↓U) = f−1(↓clU) = ↓clf−1(U) = ↓f−1(U)

since f is an ES+-morphism. □

In the next example we show that each inclusion in Figure 2 is proper,
and that ES∗ is incomparable with ES and ES+. The duality results we obtain
later in the section will then imply that the same holds for the corresponding
categories of H-frames.

Example 3.10.

(1) Let X1 = {x, y} be the two-element chain where x < y. We view X1 as
an Esakia space with the discrete topology. Let f : X1 → X1 be defined
by f(x) = f(y) = x. Then f is order-preserving. Therefore, f−1(D)
is a downset for each downset D of X1. Since the topology on X1 is
discrete, this implies that f is an ES∗-morphism. However, f is not an
ES-morphism because f−1(↓y) = X1 but ↓f−1(y) = ∅. Therefore, ES∗ is
not a subcategory of ES. Since ES+ is a wide subcategory of ES and ES∗

is a wide subcategory of ES−, it follows that ES∗ is not a subcategory
of ES+ and ES is a proper wide subcategory of ES−.
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(2) Let E and O be the sets of even and odd natural numbers. We set
X2 = N∪{∞E ,∞O} to be the two-point compactification of the discrete
space N, where ∞E is the limit point of E and ∞O the limit point of
O. We also set X3 = N ∪ {∞} to be the one-point compactification
of N. Clearly X2 and X3 are Stone spaces, and hence they are Esakia
spaces (where the order in each is the identity). Define f : X2 → X3

by f(n) = n for each n ∈ N and f(∞E) = f(∞O) = ∞. Since f is
continuous and the orders are trivial, f is obviously an ES-morphism.
On the other hand,

f−1(↓clE) = f−1(clE) = f−1(E ∪ {∞}) = E ∪ {∞E ,∞O}

while ↓clf−1(E) = cl(E) = E∪{∞E}. Therefore, since E is E-construct-
ible, f is not an ES+-morphism. Thus, ES+ is a proper wide subcategory
of ES.

(3) Let X4 = N ∪ {∞} be the one-point compactification of the discrete
space N. Define ≤ on X4 by u ≤ v iff u = v or v = ∞. It is easy to verify
that X4 is an Esakia space. Recalling X1 from (1), define f : X1 → X4

by f(x) = 0 and f(y) = ∞. It is elementary to see that f is an ES-
morphism. Clearly N is a downset of X4 and ↓clN = X4. Therefore,
f−1(↓clN) = X1. But f

−1(N) = {x}, and so ↓clf−1(N) = {x}. Thus, f
is not an ES∗-morphism. Consequently, ES and ES∗ are incomparable.
Since ES is a wide subcategory of ES−, it follows that ES∗ is a proper
wide subcategory of ES−.

We next show that f is an ES+-morphism. Let W = U \ V where
U, V are open upsets ofX2. If∞ ∈ W , then ↓clW = X2, so f

−1(↓clW ) =
X1. Also, y ∈ f−1(W ), so ↓clf−1(W ) = X1. If ∞ /∈ W , then W must
be a finite downset. Therefore, f−1(↓clW ) is {x} or ∅ depending on
whether 0 ∈ W . Similarly, ↓clf−1(W ) is {x} or ∅, so f is an ES+-
morphism by Remark 3.8(2). Thus, ES+ and ES∗ are also incomparable.

Consequently, ES† is a proper wide subcategory of both ES∗ and ES+.

We next introduce the corresponding categories of Heyting algebras.
Let HA− be the full subcategory of DL consisting of Heyting algebras. The
following is an immediate consequence of the equivalence of DL and CohFrm,
the dual equivalence of CohFrm and PS, and Theorems 3.2 and 3.4.

Theorem 3.11. HFrm− is equivalent to HA− and dually equivalent to ES−.

We next establish that HFrm is equivalent to HA and hence dually
equivalent to ES. For this we require the following lemma. We recall that
for A ∈ DL, compact elements of J (A) are precisely the principal ideals
↓a for a ∈ A. We also recall that for a DL-morphism h : A → B, the frame
homomorphism h∗ : J (A) → J (B) is given by h∗(I) = ↓h[I].

Lemma 3.12. Let h : A → B be a DL-morphism between Heyting algebras.
Then h is a Heyting homomorphism iff h∗ preserves implication of compact
elements.
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Proof. Let a, b ∈ A. Since A is a Heyting algebra, by Lemma 2.5,

↓a → ↓b = {x ∈ A : ↓x ∩ ↓a ⊆ ↓b} = {x ∈ A : ↓(x ∧ a) ⊆ ↓b}
= {x ∈ A : x ∧ a ≤ b} = ↓(a → b).

Since h is order-preserving, h[↓x] ⊆ ↓h(x), and hence ↓h[↓x] = ↓h(x) for each
x ∈ A. Therefore, using ↓a → ↓b = ↓(a → b), we have

h∗(↓a → ↓b) = h∗↓(a → b) = ↓h[↓(a → b)] = ↓h(a → b).

On the other hand, a similar calculation gives

h∗(↓a) → h∗(↓b) = ↓h[↓a] → ↓h[↓b] = ↓h(a) → ↓h(b) = ↓(h(a) → h(b)).

Therefore,

h∗(↓a → ↓b) = h∗(↓a) → h∗(↓b) iff ↓h(a → b) = ↓(h(a) → h(b))

iff h(a → b) = h(a) → h(b).

Thus, h is a Heyting homomorphism iff h∗ preserves implication of compact
elements. □

It follows from Lemma 2.3(2) that if f is a Priestley morphism between
Esakia spaces, then f is an Esakia morphism iff f−1 preserves implication
on clopen upsets. We use this fact together with Lemma 3.12 to show that
the equivalence and dual equivalence of Theorem 3.11 restrict to yield The-
orem 3.14. For this we note the following.

Remark 3.13. If F : C → D is part of an equivalence or dual equivalence and
C ′ (resp. D ′) is a subcategory of C (resp. D), then to see that F restricts to
part of an equivalence or dual equivalence between C ′ and D ′, it suffices to
verify the following three conditions.

(1) If A ∈ C , then A ∈ C ′ iff F (A) ∈ D ′.
(2) If f is a morphism in C , then f is a morphism in C ′ iff F (f) is a

morphism in D ′.
(3) Isomorphisms in C between objects in C ′ are isomorphisms in C ′, and

the same for D and D ′.

This remark will also be used to prove Theorems 3.16 and 3.21 and
Corollaries 3.18, 3.24 and 3.26 (as well as in Section 4).

Theorem 3.14. HFrm is equivalent to HA and dually equivalent to ES.

Proof. We first show that HFrm is equivalent to HA. It is obvious that Condi-
tion (1) of Remark 3.13 is satisfied since HFrm is a wide subcategory of HFrm−

and HA is a wide subcategory of HA−. Lemma 3.12 shows that a DL-morphism
h between Heyting algebras is a HA-morphism iff h∗ is a HFrm-morphism.
Therefore, Condition (2) is satisfied. That Condition (3) is also satisfied fol-
lows from the fact that isomorphisms in all categories of frames and Heyting
algebras that we consider are poset isomorphisms. Thus, the equivalence of
Theorem 3.11 restricts to an equivalence between HA and HFrm.

Next we show that ES is dually equivalent to HFrm. Again, Condi-
tion (1) is obvious. Lemma 2.3(2) implies that a PS-morphism f between
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Esakia spaces is an ES-morphism iff f−1 : ClopUp(Y ) → ClopUp(X) is a HA-
morphism, which is equivalent to f−1 : OpUp(Y ) → OpUp(X) being a HFrm-
morphism. Therefore, Condition (2) is satisfied. That Condition (3) is also
satisfied follows from the fact that isomorphisms in all categories of Priestley
and Esakia spaces that we consider are order-homeomorphisms (that is, poset
isomorphisms and homeomorphisms). Thus, the duality of Theorem 3.11 be-
tween ES− and HFrm− restricts to a duality between ES and HFrm. □

It is natural to work not only with those frame homomorphisms that
preserve implication on compact elements, but also with those that are HA-
morphisms. This results in a restricted version of Esakia duality, which we
describe next. For this we recall (see, e.g., [12, p. 16]) that ifX is a topological
space, then implication in the frame of open subsets of X is given by

U → V = X \ cl(U \ V ).

If X is a Priestley space, then OpUp(X) is exactly the frame of open sets of
the corresponding spectral topology. Since the closure in the spectral topology
is ↓cl (see, e.g., [1, Lemma 6.5(1)]), implication in OpUp(X) is given by

U → V = X \ ↓cl(U \ V ). (♭)

Lemma 3.15. Let f : X → Y be a Priestley morphism between Esakia spaces.
Then f−1 : OpUp(Y ) → OpUp(X) is a HA-morphism iff f−1↓clE = ↓clf−1E
for each U-constructible subset E of Y .

Proof. Let U, V be open upsets of Y . By (♭),

f−1(U → V ) = f−1(Y \ ↓cl(U \ V )) = X \ f−1↓cl(U \ V )

and

f−1(U) → f−1(V ) = X \ ↓cl(f−1(U) \ f−1(V )) = X \ ↓clf−1(U \ V ).

Therefore, f−1 preserves implication iff f−1↓clE = ↓clf−1E for each E =
U \ V with U, V ∈ OpUp(Y ). By Remark 3.8(2), f−1 is a HA-morphism iff
f−1↓clE = ↓clf−1E for each U-constructible subset E of Y . □

Theorem 3.16. HFrm+ is dually equivalent to ES+.

Proof. Lemma 3.15 shows that a Priestley morphism f : X → Y is an ES+-
morphism iff f−1 : OpUp(Y ) → OpUp(X) is a HFrm+-morphism. Therefore,
the duality between HFrm− and ES− restricts to a duality between HFrm+

and ES+. □

Definition 3.17. Let HA+ be the wide subcategory of HA− whose morphisms
h : A → B have the property that h∗ : J (A) → J (B) is a HA-morphism.

It follows from Lemma 3.12 that HA+ is a wide subcategory of HA. The
following is then an immediate consequence of Theorems 3.14 and 3.16.

Corollary 3.18. HFrm+ is equivalent to HA+ and dually equivalent to ES+.
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It is well known that a continuous map f : X → Y between topological
spaces is open iff f−1 commutes with the closure operator for all subsets of
Y (see, e.g., [25, pp. 99–100]). Since the closure in the spectral topology of a
Priestley space is ↓ cl, the condition of Lemma 3.15 says that f−1 commutes
with the spectral closure operator on U-constructible subsets of Y . We give an
example showing that such a map may not be open in the spectral topologies
of X and Y .

Example 3.19. Let X = {∗} be a one-point space and X4 the one-point com-
pactification considered in Example 3.10(3). Define f : X → X4 by f(∗) = ∞.
Then f is an ES-morphism and is not an open map since ∞ is not an isolated
point of the spectral topology on X4. On the other hand, observe that X is
discrete and open upsets of X4 are clopen. Therefore, each U-constructible
subset E of X4 is clopen. Thus, by Lemma 2.3(2),

↓clf−1(E) = ↓f−1(E) = f−1(↓E) = f−1(↓clE).

Consequently, f satisfies the condition of Lemma 3.15.

We next turn our attention to homomorphisms that preserve arbitrary
meets.

Lemma 3.20. Let f : X → Y be a Priestley morphism between Priestley
spaces. Then f−1 : OpUp(Y ) → OpUp(X) preserves arbitrary meets iff f−1↓clD =
↓clf−1D for each downset D of Y .

Proof. The frame homomorphism f−1 preserves arbitrary meets iff for each
family {Uα} of open upsets of Y , we have

f−1
(∧

Uα

)
=

∧
f−1(Uα).

We recall that the largest upset contained in a set E ⊆ Y is□E = Y \↓(Y \E),
where we use the box notation as it is common in modal logic (see, e.g., [8]).
Since in every Priestley space the downset of a closed set is closed (see, e.g.,
[24, Proposition 2.6]), if E is open, then □E is open. Therefore,

∧
Uα =

□ (int
⋂
Uα). Thus,

f−1
(∧

Uα

)
= f−1

(
□ int

⋂
Uα

)
and ∧

f−1(Uα) = □ int
⋂

f−1(Uα) = □ intf−1
(⋂

Uα

)
.

Since in every Priestley space the downset of a point is closed, upsets are
precisely intersections of open upsets. Thus, f−1 preserves meets iff

f−1(□ intU) = □ intf−1(U)

for each upset U of Y . This happens iff

f−1(Y \ ↓cl(Y \ U)) = X \ ↓cl(X \ f−1(U)),

which happens iff

f−1↓cl(Y \ U) = ↓cl(X \ f−1(U)) = ↓clf−1(Y \ U).
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Since each downset D of Y is of the form Y \ U for some upset U of Y , the
result follows. □

Theorem 3.21. HFrm∗ is dually equivalent to ES∗.

Proof. It follows from Lemma 3.20 that a Priestley morphism f : X → Y
between Esakia spaces is an ES∗-morphism iff f−1 : OpUp(Y ) → OpUp(X) is
a HFrm∗-morphism. Therefore, the duality between HFrm− and ES− restricts
to a duality between HFrm∗ and ES∗. □

Remark 3.22. It follows from Example 3.10(3) and Theorem 3.21 that HFrm+

and HFrm∗ are incomparable. The situation changes when we restrict to subfit
H-frames, where we recall (see, e.g., [21, p. 73]) that a frame L is subfit if
whenever a, b ∈ L with a ̸≤ b, there is c ∈ L with a ∨ c = 1 and b ∨
c ̸= 1. Indeed, if L,M are H-frames and L is subfit, then it follows from
[21, Proposition V.1.8] that each HFrm∗-morphism α : L → M is a HFrm+-
morphism.

Definition 3.23. Let HA∗ be the wide subcategory of HA− whose morphisms
h : A → B in addition satisfy the property that h∗ : J (A) → J (B) is a
complete lattice homomorphism.

The following is an immediate consequence of Theorems 3.11 and 3.21.

Corollary 3.24. HFrm∗ is equivalent to HA∗ and dually equivalent to ES∗.

Definition 3.25. Let HA† = HA+ ∩ HA∗.

Putting Corollaries 3.18 and 3.24 together yields the following.

Corollary 3.26. HFrm† is equivalent to HA† and dually equivalent to ES†.

The diagram in Figure 3 depicts equivalences and dual equivalences
involving various categories of Heyting algebras, H-frames, and Esakia spaces
considered in this section. Unlabeled arrows represent equivalences and those
labeled with d dual equivalences.
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ES−

HFrm−

HA−

ES

HFrm ES∗

HA ES+ HFrm∗

HFrm+ HA∗

HA+

ES†

HFrm†

HA†

d

d

d

d

d

Figure 3. Equivalences and dual equivalences

4. Brouwerian frames

In this final section we show how to generalize the results of the previous
section to Brouwerian semilattices and Brouwerian algebras. These structures
have gone by different names in the literature (see, e.g., [25, 20, 7]). We follow
[17, 18] for terminology.

We recall that a meet-semilattice is a poset A in which all finite meets
exist. In particular, A has a top, but A may not have a bottom. A meet-
semilattice is distributive if a ∧ b ≤ c implies that there exist a′ ≥ a and
b′ ≥ b such that a′ ∧ b′ = c. A meet-semilattice homomorphism is a map
between meet-semilattices that preserves finite meets (including top). Let
DMS be the category of distributive meet-semilattices and meet-semilattice
homomorphisms.

Definition 4.1. Let A be a meet-semilattice.

(1) [18] We call A a Brouwerian semilattice if it has an implication opera-
tion → satisfying c ≤ a → b iff a ∧ c ≤ b for all a, b, c ∈ A. Let BrwMS
be the category of Brouwerian semilattices and meet-semilattice homo-
morphisms that preserve implication.

(2) [17] We call a Brouwerian semilattice A a Brouwerian algebra if in addi-
tion A is a lattice. Let BrwA be the category of Brouwerian algebras and
Brouwerian semilattice homomorphisms that in addition preserve ∨.
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Note that BrwA is a non-full subcategory of BrwMS. Also, each Brouwe-
rian semilattice is a distributive meet-semilattice. Thus, BrwMS is a non-full
subcategory of DMS.

We first generalize Esakia duality to Brouwerian algebras. For this we
need to work with pointed Esakia spaces.

Definition 4.2. A pointed Esakia space is a pair (X,m) where X is an Esakia
space andm is the unique maximum ofX. Let PES be the category of pointed
Esakia spaces and Esakia morphisms.

We note that if (X,m) and (Y, n) are pointed Esakia spaces and f : X →
Y is an Esakia morphism, then f(m) = n. Esakia duality generalizes to
Brouwerian algebras as follows.

Theorem 4.3. [5, Theorem 3.2] BrwA is dually equivalent to PES.

Remark 4.4. The contravariant functors establishing Esakia duality need
slight modification. Namely, with a pointed Esakia space (X,m) we asso-
ciate the Brouwerian algebra of nonempty clopen upsets of X (equivalently,
those clopen upsets of X that contain m). Also, with a Brouwerian algebra
A we associate the pointed Esakia space (X,m) where X is the set of prime
filters of A together with A, and A serves as the unique maximum m of X.
The action of the functors on morphisms is the same as in Esakia duality.

We next generalize Esakia duality to Brouwerian semilattices. A pointed
Priestley space is a pair (X,m) where X is a Priestley space and m is the
unique maximum of X. Let X0 be a fixed subset of X \{m}. We call a subset
U of X admissible if X0 \U is cofinal in X \U (that is, X \U ⊆ ↓(X0 \U)).
Let A (X) be the set of admissible clopen upsets of X. For x ∈ X set Ix =
{U ∈ A (X) : x /∈ U}.

Definition 4.5.

(1) A pointed generalized Priestley space is a triple (X,X0,m) such that
(a) (X,m) is a pointed Priestley space;
(b) X0 is a cofinal dense subset of X \ {m};
(c) x ∈ X0 iff Ix is nonempty and directed;
(d) x ≤ y iff (∀U ∈ A (X))(x ∈ U ⇒ y ∈ U).

(2) A pointed generalized Esakia space is a pointed generalized Priestley
space in which U, V ∈ A (X) implies that ↓(U \ V ) is clopen.

Remark 4.6. Let (X,X0,m) be a pointed generalized Esakia space. In analogy
with [4, Definition 3.4], we call a subset E of X Esakia clopen, or simply E-
clopen, if E =

⋃n
i=1(Ui \ Vi) with each Ui, Vi ∈ A (X). It is easy to see from

Definition 4.5(2) that ↓E is clopen for each E-clopen E. However, not every
clopen of X is E-clopen. Thus, a pointed generalized Esakia space may not
be an Esakia space (see [4, Example 3.9]).

Let R ⊆ X×Y be a relation between setsX and Y . For U ⊆ Y we follow
the standard notation in modal logic and write □RU = {x ∈ X : R[x] ⊆ U}
(note that □ in the proof of Lemma 3.20 is □≤).
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Definition 4.7.

(1) LetX,Y be pointed generalized Priestley spaces. A generalized Priestley
morphism is a relation R ⊆ X × Y satisfying
(a) If x ̸Ry, then there is U ∈ A (Y ) with R[x] ⊆ U and y /∈ U ;
(b) If U ∈ A (Y ), then □RU ∈ A (X).

(2) Let PGPS be the category of pointed generalized Priestley spaces and
generalized Priestley morphisms.

(3) If X,Y are pointed generalized Esakia spaces, then a generalized Priest-
ley morphism R ⊆ X × Y is a generalized Esakia morphism provided
whenever x ∈ X and y ∈ Y0 with xRy, there is z ∈ X0 with x ≤ z and
R[z] = ↑y.

(4) Let PGES be the category of pointed generalized Esakia spaces and
generalized Esakia morphisms.

Remark 4.8. Composition in PGPS and PGES is not usual relation composi-
tion. Rather, for generalized Priestley (resp. Esakia) morphisms R ⊆ X × Y
and S ⊆ Y × Z, the composition S ∗R ⊆ X × Z is defined by

x(S ∗R)z ⇐⇒ (∀U ∈ A (Z))(x ∈ □R□SU =⇒ z ∈ U)

for all x ∈ X and z ∈ Z (see [3, p. 106]).

Clearly PGES is a non-full subcategory of PGPS, and Priestley and
Esakia dualities are generalized to distributive and Brouwerian semilattices
as follows.

Theorem 4.9.

(1) [3, Theorem 6.9] DMS is dually equivalent to PGPS.
(2) [4, Theorem 4.4] BrwMS is dually equivalent to PGES.

Remark 4.10. Theorem 4.9 is proved in [3, 4] for distributive and Brouwerian
semilattices that are bounded. Because of this restriction, there is no need
to work with pointed spaces. The need for pointed spaces arises when the
bottom is not present. This is discussed in detail in [2] for distributive meet-
semilattices, and a similar approach also works for Brouwerian semilattices.

Remark 4.11. The contravariant functor A : PGPS → DMS sends X ∈ GPS
to A (X) and a PGPS-morphism R ⊆ X × Y to □R : A (Y ) → A (X). To
define the contravariant functor X : DMS → PGPS, let A ∈ DMS. We recall
that a filter F of A is optimal if from a1, . . . , an /∈ F and

⋂n
i=1 ↑ai ⊆ ↑c

it follows that c /∈ F . Equivalently, if D is the distributive envelope of A
(see, e.g., [3, Section 3]), then F is optimal iff F = P ∩ A for some prime
filter P of D ([3, Proposition 4.8]). Let Opt(A) be the set of optimal filters
of A and Pr(A) the set of prime filters of A. Then Pr(A) ⊆ Opt(A). We set
XA = Opt(A) ∪ {A}, order it by inclusion, and topologize it by letting

{φ(a) : a ∈ A} ∪ {φ(b)c : b ∈ A}
be a subbasis for the topology, where φ(a) = {x ∈ XA : a ∈ x}. We point
out that since φ(a ∧ b) = φ(a) ∩ φ(b) for each a, b ∈ A, the above subbasis
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generates the basis

{φ(a) ∩ φ(b1)
c ∩ · · · ∩ φ(bn)

c : a, b1, . . . , bn ∈ A}.

However, unlike in the case of distributive lattices, we cannot replace the
finite intersections φ(b1)

c ∩ · · · ∩ φ(bn)
c with one φ(b)c because A is not a

lattice.

The functor X : DMS → PGPS sends A ∈ DMS to the tuple X (A) :=
(XA,Pr(A), A) ∈ PGPS and a DMS-morphism h : A → B to the relation
X (h) = Rh ⊆ XB ×XA given by xRhy if h−1(x) ⊆ y. The functors A and
X yield the dual equivalence between PGPS and DMS of Theorem 4.9(1),
which further restricts to the dual equivalence of Theorem 4.9(2).

We next connect distributive and implicative semilattices with algebraic
frames. Let A be a distributive meet-semilattice. Since A is not a lattice,
instead of working with ideals of A, it is more convenient to work with filters
of A. Let F (A) be the poset of filters of A ordered by inclusion. Then F (A)
is an algebraic frame whose compact elements are the principal filters of A.
But since a ≤ b iff ↑a ⊇ ↑b, we have that A is isomorphic to the order-dual
K(F (A))d of K(F (A)).

If h : A → B is a meet-semilattice homomorphism, we can define the
map F (h) : F (A) → F (B) by F (h)(F ) = ↑h[F ]. Note that in general F (h)
preserves arbitrary joins, but may not be a frame homomorphism. In order
for F (h) to be a frame homomorphism, we need two additional conditions on
h. We recall that a prime filter of a distributive meet-semilattice A is a meet-
prime element of F (A), where an element p ̸= 1 of a frame L is meet-prime
if a ∧ b ≤ p implies a ≤ p or b ≤ p for all a, b ∈ L.

Definition 4.12. [2, Definition 5.15] Let DMSP be the category of distributive
meet-semilattices and meet-semilattice homomorphisms h : A → B that in
addition satisfy:

(1) h preserves all existing finite joins.
(2) h−1(P ) is a prime filter of A for each prime filter P of B.

Meet-semilattice homomorphisms satisfying the above two conditions
correspond to special functions between the corresponding generalized Priest-
ley spaces:

Definition 4.13. Let PGPSP be the category of pointed generalized Priestley
spaces and order-preserving maps f : X → Y satisfying

(1) U ∈ A (Y ) =⇒ f−1(U) ∈ A (X).
(2) f [X0] ⊆ Y0.
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Theorem 4.14. [2, Theorem 5.18] DMSP is equivalent to AlgFrm, dually equiv-
alent to PGPSP, and the following diagram commutes up to natural isomor-
phism.

DMSP AlgFrm

PGPSP

F

X K

YA

V a

Remark 4.15. We briefly describe the functors in the above diagram.

• The contravariant functors X and A are defined on objects as in Re-
mark 4.11. If h : A → B is a DMSP-morphism, then X (h) : XB → XA is
the PGPSP-morphism given by X (h) = h−1; and if f : X → Y is a PGPSP-
morphism, then A (f) : A (Y ) → A (X) is the DMSP-morphism given by
A (f) = f−1.

• The covariant functor F : DMSP → AlgFrm sends A ∈ DMSP to the frame
F (A) of filters of A and a DMSP-morphism h : A → B to the AlgFrm-
morphism F (h) : F (A) → F (B) given by F (h)(F ) = ↑h[F ]. The co-
variant functor K sends L ∈ AlgFrm to K(L)d and an AlgFrm-morphism
α : L → M to its restriction to K(L)d, where K(L)d is the order-dual of
K(L). The functors F and K yield an equivalence of DMSP and AlgFrm.

• To describe the contravariant functor V a : PGPSP → AlgFrm, for X in
PGPSP let V a(X) be the set of admissible closed upsets of X, ordered by
reverse inclusion. Then V a sends X ∈ PGPSP to V a(X) and a PGPSP-
morphism f : X → Y to f−1 : V a(Y ) → V a(X). To describe the con-
travariant functor Y : AlgFrm → PGPSP, we recall (see, e.g., [13, p. 49])
that an element p ̸= 1 in a frame L is pseudoprime if a1, . . . , an ∈ L with
a1 ∧ · · · ∧ an ≪ p imply that ai ≤ p for some i, where ≪ is the way below
relation on L. Let PP (L) and P (L) be the sets of pseudoprime and meet-
prime elements of L, respectively. We set YL = PP (L) ∪ {1}, order it by
the restriction of the order on L, and topologize it by the subbasis

{↑k ∩ YL : k ∈ K(L)} ∪ {(↑l)c ∩ YL : l ∈ K(L)}.
Then the functor Y sends L ∈ AlgFrm to Y (L) := (YL, P (L), 1). To
describe the action of Y on morphisms, let α : L → M be an AlgFrm-
morphism. Then it has the right adjoint r : M → L given by

r(b) =
∨

{a ∈ L : α(a) ≤ b},

and Y sends α to r. The functors V a and Y yield a dual equivalence of
PGPSP and AlgFrm.

Remark 4.16. It follows from Theorem 4.14 that X ◦K is naturally isomor-
phic to Y . This implies that meet-prime elements of L correspond to prime
filters of K(L)d and pseudoprime elements of L to optimal filters of K(L)d.
It is well known (see, e.g., [21, pp. 13-14]) that meet-prime elements of L
correspond to points of L. On the other hand, pseudoprime elements corre-
spond to what we term “pseudopoints” of L, which are defined as follows. A
nonempty upset U of L is a pseudopoint if
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•
∨
S ∈ U implies that S ∩ U ̸= ∅;

• a1, . . . , an ∈ U and a1 ∧ · · · ∧ an ≪ b imply that b ∈ U .

Definition 4.17.

(1) Let BrwMSP be the category of Brouwerian semilattices and BrwMS-
morphisms that are also DMSP-morphisms.

(2) Let BrwAP be the full subcategory BrwMSP consisting of Brouwerian
algebras.

We are ready to introduce the key notion of this section, that of a Brouw-
erian frame. These frames play the same role for Brouwerian semilattices as
H-frames for Heyting algebras.

Definition 4.18.

(1) We call an algebraic frame L a Brouwerian frame if K(L)d is a Brouw-
erian semilattice.

(2) Let BrwFrm be the category whose objects are Brouwerian frames and
whose morphisms are those AlgFrm-morphisms α : L → M that satisfy
α(a → b) = α(a) → α(b) for each a, b ∈ K(L), where the two implica-
tions are calculated in K(L)d and K(M)d, respectively.

Remark 4.19. We don’t have an analogue of Definition 3.1 because due to
turning the order around, implication becomes co-implication, which may not
exist in frames.

Remark 4.20. Brouwerian frames arise naturally in universal algebra as the
lattice of congruences of an algebra in a variety with equationally definable
principal congruences [19].

Definition 4.21. Let PGESP be the category of pointed generalized Esakia
spaces and PGPSP-morphisms f : X → Y satisfying: If x ∈ X, y ∈ Y0, and
f(x) ≤ y, then there is z ∈ X0 with x ≤ z and y = f(z).

We show that the functors of Theorem 4.14 restrict to yield an equiva-
lence between BrwMSP and BrwFrm and a dual equivalence between BrwFrm
and PGESP. For this we require the following lemma, which follows from [3, 4].
Slight care is needed since these papers only consider the bounded case, while
we do not assume the existence of a bottom. Nonetheless, the relevant proofs
carry over to our more general setting.

Lemma 4.22.

(1) Let X be a pointed generalized Priestley space. Then X is a pointed
generalized Esakia space iff A (X) is a Brouwerian semilattice.

(2) Let X and Y be pointed generalized Esakia spaces and f : X → Y a
PGPSP-morphism. Then f is a PGESP-morphism iff f−1(U → V ) =
f−1(U) → f−1(V ) for each U, V ∈ A (Y ).

Proof. (1) follows from [4, Proposition 3.7] and [3, Theorem 5.13] and (2)
follows from [4, Propositions 4.1, 4.3, Lemma 4.8]. □
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Theorem 4.23. There is an equivalence of categories between BrwMSP and
BrwFrm, a dual equivalence between BrwFrm and PGESP, and the following
diagram commutes up to natural isomorphism, where the functors are the
restrictions of the corresponding functors of Theorem 4.14.

BrwMSP BrwFrm

PGESP

F

X K

YA

V a

Proof. We show that F and K restrict to give an equivalence between
BrwMSP and BrwFrm. If A ∈ DMSP, then since A ∼= K(F (A))d, we see
that F (A) ∈ BrwFrm iff A ∈ BrwMSP. Next, let h : A → B be a DMSP-
morphism between Brouwerian semilattices. Then h is a BrwMSP-morphism
iff it preserves implication, which happens iff F (h) is a BrwFrm-morphism,
again by the isomorphisms A ∼= K(F (A))d and B ∼= K(F (B))d. Finally,
DMSP-isomorphisms between Brouwerian semilattices are clearly BrwMSP-
isomorphisms. Similarly, AlgFrm-isomorphisms between Brouwerian frames
are BrwFrm-isomorphisms. Thus, F and K restrict to an equivalence be-
tween BrwMSP and BrwFrm by Remark 3.13.

We next show that V a,Y restrict to give a dual equivalence between
PGESP and BrwFrm. Let X ∈ PGPSP. By Lemma 4.22(1), X ∈ PGESP
iff A (X) ∈ BrwMSP. By [2, Lemma 4.4], V a(X) is an algebraic frame
with K(V a(X))d = A (X). Hence, A (X) ∈ BrwMSP iff V a(X) ∈ BrwFrm.
Thus, X ∈ PGESP iff V a(X) ∈ BrwFrm. Let f : X → Y be a PGPSP-
morphism between pointed generalized Esakia spaces. Since K(V a(Y ))d =
A (Y ), Lemma 4.22(2) shows that f is a PGESP-morphism iff

f−1(U → V ) = f−1(U) → f−1(V )

for each U, V ∈ K(V a(Y )). Therefore, f is a PGESP-morphism iff f−1 is a
BrwFrm-morphism. It is also clear that PGPSP-isomorphisms between pointed
generalized Esakia spaces are PGESP-isomorphisms. Thus, V a and Y restrict
to an equivalence between PGESP and BrwFrm.

In view of Theorem 4.14, it follows that the diagram commutes up to
natural isomorphism. □

Remark 4.24. If in Theorem 4.23 we replace BrwMSP with BrwMS and
PGESP with PGES, then we need to weaken the notion of a BrwFrm-morphism
α : L → M by dropping the conditions that α preserves finite meets. If we de-
note the resulting category of Brouwerian frames by BrwFrmJ (where J stands
for join-preserving), then we obtain the following version of the diagram in
Theorem 4.23 which commutes up to natural isomorphism:

BrwMS BrwFrmJ

PGES

F

X K

YA

V a
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The proof is an appropriate modification of the proof of Theorem 4.23 along
the lines of [2, Theorem 4.30].

Remark 4.25. The other categories of H-frames considered in Section 3 also
have natural generalizations to the setting of Brouwerian frames. The equiv-
alences and dual equivalences of Section 3 then generalize to involve the
corresponding categories of Brouwerian frames.

We next study those Brouwerian frames that correspond to Brouwerian
algebras. Recall (see, e.g., [13, p. 117]) that an algebraic frame L is arithmetic
if a, b ∈ K(L) implies a ∧ b ∈ K(L). Arithmetic frames are also known as
M-frames (see, e.g., [15, 6]).

Definition 4.26. Let BrwArFrm be the full subcategory of BrwFrm whose ob-
jects are Brouwerian arithmetic frames.

Definition 4.27. Let PESP be the wide subcategory of PES whose morphisms
f : (X,m) → (Y, n) satisfy f−1({n}) = {m}.

Remark 4.28. For a pointed Esakia space (X,m), if we let X0 = X \ {m},
then (X,X0,m) is a pointed generalized Esakia space. Thus, we can view
PESP as a full subcategory of PGESP.

Theorem 4.29. The functors of Theorem 4.23 restrict to yield that BrwAP

is equivalent to BrwArFrm and dually equivalent to PESP. Consequently, the
following diagram commutes up to natural isomorphism.

BrwAP BrwArFrm

PESP

F

X K

YA

V a

Proof. Let L ∈ BrwArFrm. We prove that Y (L) ∈ PESP. For this it suffices
to show that PP (L) ⊆ P (L). Let p ∈ PP (L) and a, b ∈ L with a, b ̸≤ p.
Since L is an algebraic frame, there are k, l ∈ K(L) with k ≤ a, l ≤ b, and
k, l ̸≤ p. Because L is arithmetic, k ∧ l ∈ K(L). If a ∧ b ≤ p, then k ∧ l ≪ p.
Since p ∈ PP (L), either k ≤ p or l ≤ p. The obtained contradiction shows
that a ∧ b ̸≤ p, and hence p ∈ P (L).

Next let X ∈ PESP. Then each nonempty closed upset is admissible,
and so if U, V ∈ A (X), then U ∪ V ∈ A (X). Since A (X) = K(V a(X))d,
this shows that V a(X) is arithmetic, and hence V a(X) ∈ BrwArFrm.

It is also elementary to see that if L ∈ BrwFrm, then L ∈ BrwArFrm
iff K (L) ∈ BrwAP. Thus, since BrwAP, BrwArFrm, and PESP are full sub-
categories of BrwMSP, BrwFrm, and PGESP, the result follows from Theo-
rem 4.23. □

Remark 4.30. As in Remark 4.24, if we replace BrwAP with BrwA and PESP
with PES, then we have to replace BrwArFrm with BrwArFrmJ to obtain the
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following diagram of equivalences and dual equivalences that commutes up
to natural isomorphism.

BrwA BrwArFrmJ

PES

F

X K

YA

V a

Combining Theorems 3.14, 4.23 and 4.29, we arrive at the following
diagram which commutes up to natural isomorphism.

BrwMSP BrwFrm PGESP

BrwAP BrwArFrm PESP

HA HFrm ES

d

d

d

The horizontal arrows represent equivalences or dual equivalences when the
label d is present. The vertical arrows represent full subcategories, except
HFrm is not really a subcategory of BrwArFrm (see below). The equivalences
and dual equivalences of the middle row are restrictions of the equivalences
and dual equivalences of the top row. The situation with the bottom row is
slightly different in that if L ∈ HFrm, then we work with K(L) rather than
K(L)d. Similarly, if X ∈ ES, we work with the open upsets of X rather than
the closed upsets (ordered by reverse inclusion).

If instead of HFrm we worked with the category whose objects are
Brouwerian arithmetic frames in whichK(L)d is a Heyting algebra and whose
morphisms are BrwArFrm-morphisms, then we would obtain a category that
is a full subcategory of BrwArFrm and is equivalent to HFrm. In other words, if
instead of working with the frames of open upsets of Esakia spaces we worked
with the frames of closed upsets (ordered by reverse inclusion), then we would
obtain a category that is equivalent to a full subcategory of BrwArFrm that
is equivalent to HFrm.
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