Original Research

BRAF V600E status may facilitate decision-making on active surveillance of low-risk papillary thyroid microcarcinoma

Kyeong J. Kim a,b, Sin G. Kim b, Jie Tan a, Xiaopei Shen a, David Viola c, Rossella Elisei c, Efsisio Puxeddu d, Laura Fugazzola e, Carla Colombo e, Barbara Jarzab f, Agnieszka Czarniecka f, Alfred K. Lam g, Caterina Mian h, Federica Vianello i, Linwah Yip j, Garcilaso Riesco-Eizaguirre k,l,m, Pilar Santisteban l,m, Christine J. O’Neill n, Mark S. Sywak n, Roderick Clifton-Bligh n, Bela Bendlova o, Vlasta Sýkorová o, Mingzhao Xing a,*

a Laboratory for Cellular and Molecular Thyroid Research, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
b Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, South Korea
c Section of Endocrinology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
d Department of Internal Medicine, University of Perugia, Perugia, Italy
e Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
f Maria Skłodowska-Curie Institute-Oncology Center, Gliwice Branch, Gliwice, Poland
g Cancer Molecular Pathology of School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
h Department of Medicine, Endocrinology Unit, University of Padua, Italy
i Veneto Institute of Oncology, IRCCS, Padua, Italy
j University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
k Department of Endocrinology and Nutrition Hospital Universitario La Paz and Hospital, Universitario De Mostoles, 28029 Madrid, Spain
l Biomedical Research Institute “Alberto Sols”, Consejo Superior De Investigaciones Cientificas and Universidad Autonomo de Madrid, 28029, Madrid, Spain
m Ciberonc, Health Institute Carlos III, 28029 Madrid, Spain
n Endocrine Surgical Unit, The University of Sydney, Sydney, Australia
o Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic

Received 15 July 2019; received in revised form 5 October 2019; accepted 21 October 2019
Available online 29 November 2019

*Corresponding author: Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E Monument Street/Suite 333, Baltimore, MD 21287, USA. Fax: +1 410 955 8172.
E-mail address: mxing1@jhmi.edu (M. Xing).

https://doi.org/10.1016/j.ejca.2019.10.017
0959-8049/© 2019 Elsevier Ltd. All rights reserved.
Abstract Introduction: Conservative active surveillance has been proposed for low-risk papillary thyroid microcarcinoma (PTMC), defined as ≤1.0 cm in greatest dimension [5], constituting a major portion of thyroid malignancies in some studies [1,6,7]. The Surveillance, Epidemiology, and End Results (SEER) data have shown an increase in the incidence of PTMC from 3.39 per 100,000 person-years in 1983–1985 to 13.02 per 100,000 person-years in 2010–2013, with an average annual percent change of 9.3% [1]. Although the majority of patients with PTMC have an indolent disease course with no serious clinical outcomes, some patients do have tumour metastasis and even disease-specific mortality [8–10]. Of particular note is that recurrence of PTMC can occur after treatment, which may be associated with increased risk of patient morbidity and mortality. Thus, prevention of disease recurrence of PTMC is a major goal of its treatment in the current clinical practice.

It is often difficult to precisely risk stratify and accordingly treat PTMC to achieve an optimal benefit-harm balance of the treatments. Therefore, the management style of PTMC, particularly low-risk PTMC, is currently widely variable in different clinical practices around the world, ranging from total thyroidectomy for every patient with PTMC to non-surgical active surveillance in patients with clinically low-risk PTMC. The conservative active surveillance is attractive but controversial as an approach to clinically low-risk PTMC, defined as lack of extrathyroidal extension (ETE), lymph node metastasis (LNM) and distant metastasis (DM), which are well known to be associated with an increased risk of recurrence [9–11]. One major issue is that in some patients initially apparently low-risk PTMC is actually inherently destined, perhaps genetically driven, for a later course of poor prognosis—disease recurrence and even mortality. To identify those patients with PTMC that has clinically apparently low-risk at the initial presentation but has inherently high potential for poor prognosis, such as disease recurrence, is clinically challenging. The opposite is also true—i.e., it may not be always straightforward to identify the cases with apparently low-risk PTMC that is truly of low risk. A novel approach, such as the use of genetic guidance, which could further risk stratify clinically apparently low-risk PTMC, could be useful in helping more precisely to define the management of this common type of thyroid cancer.

In recent years, BRAF V600E mutation has been introduced as a genetic prognostic marker to assist the risk evaluation of PTC [12,13]. There have also been some studies on PTMC in this regard, but they have been virtually all focused on the overall analyses of
PTMC with inconsistent results [11,14,17]. There are limited data on the prognostic value of \(\text{BRAF} \) V600E in the unique category of PTC—clinically low-risk PTMC. More than ten years ago, Mazzaferri suggested that \(\text{BRAF} \) V600E could be useful in further risk stratification of low-risk PTMC [18], but current clinical guidelines on the treatment of thyroid cancer, such as the American Thyroid Association guidelines, have not been able to specifically define yet \(\text{BRAF} \) V600E as a risk-differentiating factor for low-risk PTMC [19]. This controversy derives largely from the fact that direct data on the prognostic value of \(\text{BRAF} \) V600E in the risk assessment of low-risk PTMC is lacking. There has been particularly lack of a large multicenter study that could provide a strong analysis power to resolve this controversy. In view of this, we conducted the present large international multicenter study to directly investigate the prognostic value of \(\text{BRAF} \) V600E mutation in PTMC, with a particular emphasis on low-risk PTMC.

2. Materials and methods

2.1. Patients and mutational analyses

This study initially included 2638 patients with PTC from 11 medical centres in six countries, as detailed previously [20–24]. After exclusion of patients with tumour size \(>1.0 \) cm, we had 743 patients with PTMC (584 women and 159 men), with a median age of 49 years (interquartile range [IQR], 39–59 years) and a median clinical follow-up time of 53 months (IQR, 25–93 months) from 1978 to 2015. The clinicopathological demographic characteristics of the patients with PTMC in this cohort from different medical centres are presented in Supplemental Table S1. We defined low-risk PTMC as having no ETE, LNM, and DM and high-risk PTMC as having at least one of these high-risk characteristics. All patients received total or near-total thyroidectomy. Neck lymph node dissection and radioiodine ablation were pursued when clinically indicated as previously described [16,22,23]. Tumour recurrence was defined as combined persistent and recurrent disease confirmed by histologic/cytologic/radiographic/biochemical criteria as previously described [16]. Follow-up time was defined as the time from initial thyroidectomy to tumour recurrence or to the latest clinical contact in the case of no recurrence. The study was approved by the institutional review board of all the centres involved and informed consent was obtained from patients where required. For \(\text{BRAF} \) V600E mutation analyses, we amplified exon 15 of the \(\text{BRAF} \) gene containing the mutation hotspot using polymerase chain reaction primers, as described previously [24–35]. Genetic analyses were performed after surgical and radioiodine ablation treatments in all patients and the \(\text{BRAF} \) mutation status did not affect the treatment strategy.

2.2. Statistical analysis

We presented continuous data as medians and IQRs using the Wilcoxon–Mann–Whitney test for the analysis of non-normally distributed variables and presented categorical data as frequencies and percentages using a chi-squared test for the analysis or Fisher’s exact test for small case numbers. Kaplan–Meier survival curves with log-rank test were used to analyse the recurrence-free survival. Independent risk factors associated with disease recurrence were examined by Cox-regression analyses to generate hazard ratio (HR) and 95% confidence interval (CI). All reported \(P \) values were two-sided and a value <0.05 was considered significant. All analyses were performed using SPSS version 20.0 (IBM SPSS, Inc. New York, NY) and GraphPad Prism version 7 (GraphPad Software, San Diego, CA).

3. Results

3.1. Effect of \(\text{BRAF} \) V600E mutation on disease recurrence of PTMC in the overall cohort

We first took the advantage of this large multicenter cohort of 743 patients with PTMC to examine the general effect of \(\text{BRAF} \) V600E mutation on tumour behaviours, particularly disease recurrence, in the overall PTMC cohort (Table 1). The overall prevalence of \(\text{BRAF} \) V600E mutation in PTMC was 32.4% (241/743). \(\text{BRAF} \) V600E was associated with several high-risk tumour behaviours, such as ETE and LNM. The tumour recurrence rate in patients with \(\text{BRAF} \) mutation-negative PTMC was significantly lower compared with that of \(\text{BRAF} \) mutation-positive patients (6.4% versus 10.8%, respectively), with an unadjusted HR of 2.01 (95% CI, 1.20–3.38), which remained significant at 2.44 (95% CI, 1.15–5.20) after adjustment for patient age, sex, conventional pathological risk factors, medical centre, and radioactive iodine treatment (Table 2). A significant association between \(\text{BRAF} \) V600E mutation and decreased recurrence-free survival is also revealed on Kaplan–Meier analysis (log-rank \(P = 0.007; \) Fig. 1A).

Similar results were obtained when the analyses were performed only on a conventional variant of PTMC (CPTMC). The prevalence of \(\text{BRAF} \) mutation in this group was 32.9% (198/602). Tumour recurrence rates in CPTMC were 6.2% (25/404) versus 12.1% (24/198) in \(\text{BRAF} \) mutation-negative and \(\text{BRAF} \) mutation-positive patients, respectively, with an HR of 2.94 (95% CI, 1.20–7.20) after adjustment for patient age, sex, conventional pathological risk factors, medical centre, and radioactive iodine treatment (Table 2). On Kaplan–Meier analysis, the recurrence-free survival curve of \(\text{BRAF} \) mutation-positive patients significantly
decreased compared with that of BRAF mutation-negative patients (log-rank \(P = 0.003; \) Fig. 1B).

3.2. Effect of BRAF V600E mutation on disease recurrence of low- and high-risk PTMCs

We next examined the effect of BRAF V600E mutation on disease recurrence of PTMC in different risk groups. As shown in Table 3, the overall BRAF V600E rate was 26.6\% (139/522) and disease recurrence rate was 2.1\% (11/522) in low-risk PTMC. The recurrence rates were 1.3\% versus 4.3\% in BRAF mutation-negative versus BRAF mutation-positive patients, respectively, with a HR of 6.65 (95\% CI, 1.80–24.65) after adjustment for patient age, sex, medical centre, and radioactive iodine treatment. The negative predictive value of BRAF mutation for recurrence of low-risk PTMC was 98.7\% (95\% CI, 96.8\%–99.5\%) (Table 3). In the high-risk group, however, BRAF mutation had no significant effect on tumour recurrence, with a HR of 1.28 (95\% CI, 0.69–2.37) after adjustment for patient age, sex, medical centre, and radioactive iodine treatment. On Kaplan–Meier analysis, BRAF mutation was associated with a significant decrease in recurrence-free survival curve in low-risk PTMC (log-rank \(P = 0.023; \) Fig. 2A), whereas in the high-risk group, BRAF mutation had no significant effect on the recurrence-free survival curve (log-rank \(P = 0.688; \) Fig. 2B).

Similar results were obtained in CPTMC. The recurrence rate in low-risk CPTMC was 1.3\% versus 4.3\% in BRAF mutation-negative versus BRAF mutation-positive patients, with a HR of 5.15 (95\% CI, 1.21 to 21.83) after adjustment for patient age, sex, medical centre, and radioactive iodine treatment (Table 3). In high-risk CPTMC, BRAF mutation had no effect on tumour recurrence, with an adjusted HR of 1.34 (95\% CI, 0.71 to 2.56). On Kaplan–Meier analyses, BRAF mutation was associated with a significant decline in the recurrence-free survival curve in low-risk CPTMC (log-rank \(P = 0.036; \) Fig. 2C), but not in high-risk CPTMC (log-rank \(P = 0.422; \) Fig. 2D).

4. Discussion

It can be a challenging task to precisely risk stratify patients with PTMC for prognostic risk level-based
appropriate managements, particularly apparently low-risk cases. Although patients with PTMC generally have an excellent prognosis [36,37], some patients experience tumour recurrence and even mortality [9,10], suggesting that all PTMCs do not have the same intrinsic risk for poor outcomes. There are currently ongoing debates particularly on how to further risk stratify and appropriately manage clinically apparently low-risk PTMC. Controversies exist particularly on how to select cases of such low-risk PTMC for conservative active surveillance.

In this context, the present large international multicenter study has demonstrated that BRAF V600E mutation can be a prognostic marker for poorer clinical-pathological outcomes of PTMC, particularly for disease recurrence of low-risk PTMC. In fact, this study has for the first time shown that BRAF mutation can further differentiate the recurrence risk of clinically low-risk PTMC—wild-type BRAF patients have an extremely low risk of recurrence whereas BRAF mutation patients have a significantly increased recurrence risk, representing an independent prognostic value of BRAF mutation in the apparently clinically low-risk PTMC. Unlike in low-risk PTMC, in high-risk PTMC, BRAF V600E mutation was not an independent risk factor for disease recurrence in the present study. This finding may be expected, given the fact that even in the absence of BRAF mutation, classical high-risk tumour features already existed in high-risk PTMC as defined in the present study, which would be associated with a high recurrence rate. These findings in the present study by analysing low- and high-risk PTMCs separately may now reconcile the inconsistent results of previous studies on the prognostic value of BRAF V600E in the overall analyses of all PTMCs as the outcomes of those studies would vary depending on the composite portions of low- and high-risk PTMCs in the cohorts of patients included [11,14–17].

Active surveillance has been recently proposed as an alternative option to surgical treatment in low-risk PTMC, which is drawing increasing attention [19,38,39]. It is of concern, however, that all low-risk PTMCs may not uniformly remain “silent” without clinical consequences [40–42]. It is also unknown what molecular markers can distinguish intrinsically aggressive but initially apparently low-risk PTMC from truly indolent low-risk PTMC. A striking finding in the present study was the extremely low recurrence rate in low-risk PTMC that harboured the wild-type BRAF, representing a robust negative predictive value (99%) of BRAF V600E for disease recurrence. It has been recently recommended by Miyauchi and Ito that active surveillance is the primary approach to the management of clinically low-risk PTMC as opposed to immediate surgical treatment [43]. Our present study suggests that this conservative approach is reasonable for BRAF mutation-negative low-risk PTMC given its extremely low recurrence rate. This is supported also by the fact that virtually no PTC-related mortality occurred in patients with BRAF mutation-negative PTC, particularly in patients with conventional PTC, including even PTC >1.0 cm [44]. In this context, because the cost of BRAF test is generally low and the cost of thyroidectomy is high, this BRAF status-based approach to the management of PTMC would spare many patients from total thyroidectomy or even any thyroidectomy and would thus likely be cost-saving, in addition to other advantages.

Our present study demonstrated that BRAF V600E mutation could independently define a significantly increased risk of disease recurrence in initially apparently low-risk PTMC. This finding, together with the well-known other adverse effects of BRAF V600E on PTC [12,13,16,24], suggests that non-surgical long-term surveillance may not be appropriate for patients with BRAF mutation-positive low-risk PTMC. Even a recurrence rate of 4.3% in the BRAF mutation-positive low-risk PTMC found in the present study seems to be relatively low; this significant increase in recurrence risk compared with BRAF mutation-negative PTMC suggests a significantly increased aggressive potential of the tumour associated with BRAF V600E. This is a concern...
particularly given that the long-term impact of BRAF
mutation on clinical outcomes of thyroid cancer will
likely be substantial if significant tumour growth, ETE,
or LNM occurs. This is because previous findings sug-
gest that BRAF V600E-positive intrathyroidal PTC
>1.0 cm has a substantially increased recurrence risk,
particularly in the case of tumours >2.0 cm where there
was a robustly increased recurrence risk to around
20–30%, which was comparable with the recurrence risk
of invasive PTC [21]. It has been previously
demonstrated that BRAF V600E and ETE or LNM has
a robustly synergistic adverse effect on clinical outcomes
of PTC, including disease recurrence [16] and patient
mortality [24]. New ETE and LNM can develop even in
initially low-risk PTMC if given sufficient time and even
in the absence of significant growth of the primary
tumour. Once ETE and LNM occur in BRAF V600E-
positive tumour, synergistic interactive effects between
the newly developed aggressive pathological factors and
BRAF V600E on poor clinical outcomes of PTMC may

Table 3

<table>
<thead>
<tr>
<th>Tumour recurrence</th>
<th>Unadjusted</th>
<th>Adjusted*</th>
<th>Negative predictive value, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall, n (%)</td>
<td>BRAF V600E negative, n (%)</td>
<td>BRAF V600E positive, n (%)</td>
<td>P-value</td>
</tr>
<tr>
<td>All PTMCs</td>
<td>11/522</td>
<td>5/383 (1.3)</td>
<td>6/139 (4.3)</td>
</tr>
<tr>
<td>Low-risk group</td>
<td>11/522</td>
<td>5/383 (1.3)</td>
<td>6/139 (4.3)</td>
</tr>
<tr>
<td>High-risk group</td>
<td>47/221</td>
<td>27/119 (22.7)</td>
<td>20/102 (19.6)</td>
</tr>
<tr>
<td>Conventional PTMC</td>
<td>9/423 (2.1)</td>
<td>4/308 (1.3)</td>
<td>5/115 (4.3)</td>
</tr>
<tr>
<td>Low-risk group</td>
<td>40/179</td>
<td>21/96 (21.9)</td>
<td>19/83 (22.9)</td>
</tr>
<tr>
<td>High-risk group</td>
<td>40/179</td>
<td>21/96 (21.9)</td>
<td>19/83 (22.9)</td>
</tr>
</tbody>
</table>

PTMC, papillary thyroid microcarcinoma; CI, confidential interval.

* Adjusted for patient age at diagnosis, sex, medical centres, and radioactive iodine treatments.

Fig. 2. Kaplan–Meier analysis of disease recurrence-free survival by BRAF V600E mutation status in PTMC of different risks. A. Low-risk PTMC; B. high-risk PTMC; C. low-risk conventional PTMC; and D. high-risk conventional PTMC. Comparison of recurrence-free survival was performed between BRAF V600E mutation-positive and wild-type BRAF patients using the log-rank test. Follow-up time was truncated at 10 years.
intensify [16,24]. Moreover, the adverse effects of \textit{BRAF} V600E on clinical outcomes of PTC, such as disease-specific mortality, start to be significantly manifested particularly after 10 years of clinical follow-up from the initial treatment [24]. Therefore, \textit{BRAF} mutation-positive low-risk PTMC has an aggressive potential if left untreated, making uncertain the feasibility of the long-term non-surgical conservative surveillance for such \textit{BRAF} mutation-positive thyroid cancer. It is worth noting that \textit{BRAF} mutation was found only in 26.6% of patients with clinically low-risk PTMC in the present study. Thus, if the \textit{BRAF} mutation status is used to assist the management of low-risk PTMC, the vast majority of patients could be managed with conservative surveillance although only a minority of patients need to pursue thyroidectomy. It has been recently recommended that a clinical risk level-based approach in the prognostic use of \textit{BRAF} mutation to the management of PTC be applied and, as such, thyroid lobectomy may be just adequate for \textit{BRAF} mutation-positive low-risk PTMC [45].

A limitation of the present study was the relatively small number of patients in the high-risk group of PTMC, reducing the power to conclude the results. Previous studies demonstrated that even though \textit{BRAF} mutation-negative PTC could have recurrence [16,46], PTC-related mortality virtually only occurred in patients with \textit{BRAF} mutation-positive PTC [44]. Thus, the \textit{BRAF} mutation status may also have a prognostic value even in high-risk PTMC; absence of the mutation implies virtually no PTMC-related mortality. The lack of information on other mutations, such as rat sarcoma (\textit{RAS}) mutations and telomerase reverse transcriptase (\textit{TERT}) promoter mutation, is another limitation of this study. However, \textit{RAS} mutations are mutually exclusive with \textit{BRAF} V600E [47] and they alone do not have adverse effects on the outcomes of low-risk PTC [45], \textit{TERT} promoter mutation is uncommon in PTMC, which alone is also not associated with aggressiveness of PTMC [48]. We analysed the Johns Hopkins cases, which had information on both the \textit{BRAF} and \textit{TERT} mutations, and found that \textit{TERT} promoter mutation alone indeed had no effect, whereas \textit{BRAF} mutation alone had a significant effect on disease recurrence either in the overall analysis of all PTMCs or low-risk PTMC; in fact, a remarkable recurrence rate of 13.5% (5/37) was observed in the group with \textit{BRAF} mutation alone versus only 1.6% (3/189) in the group with no mutation (Supplemental Table S2). \textit{BRAF} V600E and \textit{TERT} promoter mutations often coexist in PTC to form an oncogenic genetic duet that is associated with a robustly increased risk of poor clinical outcomes of PTC [44,46].

The number of cases with this genetic duet was too small in PTMC, particularly low-risk PTMC, to analyse in the present study (Supplemental Table S2).

In summary, in this large multicenter study, we demonstrate that \textit{BRAF} V600E can further differentiate the prognostic risk of low-risk PTMC: the mutation has an extremely robust negative predictive value for disease recurrence and is associated with a significantly increased recurrence. These results, together with the known aggressive role of \textit{BRAF} V600E in PTC in general, suggest that \textit{BRAF} mutation-positive PTMC can be reasonably treated surgically; the feasibility of long-term conservative surveillance of \textit{BRAF} mutation-positive PTMC initially presenting with low-risk clinical features seems uncertain, making it reasonable at this time to treat such thyroid cancer surgically, albeit with limited surgical extent—thyroid lobectomy, for example. In contrast, conservative management in the form of non-surgical active surveillance is reasonable for \textit{BRAF} mutation-negative low-risk PTMC, which accounts for the majority of patients with clinically low-risk PTMC. Thus, more precise management of patients with low-risk PTMC can be achieved by including the \textit{BRAF} V600E mutation status in the prognostic risk stratification.

Conflict of interest statement

Mingzhao Xing receives royalties as co-holder of a licensed USA patent related to \textit{BRAF} V600E mutation in thyroid cancer. Other authors have no conflict of interest to disclose.

Funding/support

This study was supported partly by US National Institutes of Health (NIH) Grant Nos. R01CA215142 and R01CA189224 (M.X.) and by the following additional funding at the individual participating centres:

- Polish National Center of Research and Development MILESTONE (Molecular Diagnostics and Imaging in Individualized Therapy for Breast, Thyroid and Prostate Cancer) Project Grant No. STRATEGMED2/267398/4/NCBR/2015 (A.C., B.J.); grants from the Menzies Health Institute, Griffith University, Queensland Cancer Council, and Queensland Smart State Fellowship in Australia (A.K.L.); Ministry of Economy and Competitiveness (MINECO) and Fondo Europeo de Desarrollo Regional (FEDER) Grant No. SAF2016-75531-R, Instituto de Salud Carlos III Grant No. PI14/01980, Asociación Española Contra el Cáncer Foundation Grant No. GCB14142311CRES, and TIRONET2-CM Grant No. B2017/BMD-3724 TIRONET2-CM in Spain (P.S., G.R.-E.; Institute of Endocrinology Grant Nos. AZV 16-32666A and MH CZ-DRO 0002761 in the Czech Republic (B.B., V.S.); grants from the New South Wales Cancer Institute (C.J.O.) and Cancer Council of New South Wales (R.C.-B.) in Australia; National Institute on Aging, NIH, Grant No. 5R03AG042334-02 (L.Y.); grants from the New South Wales Cancer Institute (C.J.O.) and Cancer Council of New South Wales (R.C.-B.) in Australia; National Institute on Aging, NIH, Grant No. 5R03AG042334-02 (L.Y.); grants from the
Scientifica, the Associazione Italiana per la Ricerca sul Cancro, the Istituto Toscano Tumori, and the Ministero della Salute in Italy (D.V. and R.E.).

Role of the funding Sources

The funding organizations had no role in the design and conduct of the study; the collection, management, analysis, and interpretation of the data; or the preparation, review, or approval of the manuscript.

Disclaimer

The content of this article is solely the responsibility of the authors and does not necessarily reflect the official views of the NIH or the funding entities of the individual centres participated in this study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejca.2019.10.017.

References

[38] Ito Y, Miyauchi A, Kihara M, Higashiya T, Kobayashi K, Miya A. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid 2014;24:27-34.

