Cigarette smoking and gastric cancer in the Stomach Cancer Pooling (StoP) Project

Delphine Prauda, Matteo Rotab, Claudio Pelucchib, Paola Bertuccioa, Tiziana Rossoa, Carlotta Galeoneb, Zuo-Feng Zhange, Keitaro Matsuok, Hitomi Itoi, Jinfu Hum, Kenneth C. Johnsono, Guo-Pei Yun, Domenico Pallic, Monica Ferraronia, Joshua Muscatj, Nuno Lunetq, Bárbara Peleiteiroq, Reza Malekzadehs, Weimin Yet, Huan Songt, David Zaridzev, Dmitry Maximovitchv, Nuria Aragonésw,x,y, Gemma Castaño-Vinyalsz,t,‡, Jesus Vioquez,§, Eva M. Navarrete-Muñozz,§, Mohammadreza Paksereshtp,s,∥, Farhad Pourfarzi‡, Alicja Wolku, Nicola Orsiniu, Andrea Bellaviau, Niclas Håkanssonu, Lina Mug, Roberta Pastorinod, Robert C. Kurtzh, Mohammad H. Derakhshans,§, Areti Lagiou**, Pagona Lagiouj, Tiziana Rossoa, Carlotta Galeoneb, Paola Bertuccio,a Delphine Praud,a Parkinsonia A, 12 May 2016, 16:00:00-000

Keywords: consortium, risk factors, pooled analysis, stomach neoplasms, tobacco smoking

Tobacco smoking is a known cause of gastric cancer, but several aspects of the association remain imprecisely quantified. We examined the relation between cigarette smoking and the risk of gastric cancer using a uniquely large dataset of 23 epidemiological studies within the ‘Stomach Cancer Pooling (StoP) Project’, including 10,290 cases and 26,145 controls. We estimated summary odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) by pooling study-specific ORs using random-effects models. Compared with never smokers, the ORs were 1.20 (95% CI: 1.09–1.32) for ever, 1.12 (95% CI: 0.99–1.27) for former, and 1.25 (95% CI: 1.11–1.40) for current cigarette smokers. Among current smokers, the risk increased with number of cigarettes per day to reach an OR of 1.32 (95% CI: 1.10–1.58) for smokers of more than 20 cigarettes per day. The risk increased with duration of smoking, to reach an OR of 1.33 (95% CI: 1.14–1.54) for more than 40 years of smoking and decreased with increasing time since stopping cigarette smoking (P for trend < 0.01) and became similar to that of never smokers 10 years after stopping. Risks were somewhat higher for cardia than noncardia gastric cancer. Risks were similar when considering only studies with information on Helicobacter pylori infection and comparing all cases to H. pylori+ controls only. This study provides the most precise estimate of the detrimental effect of cigarette smoking on the risk of gastric cancer on the basis of individual data, including the relationship with dose and duration, and the decrease in risk following stopping smoking. European Journal of Cancer Prevention 00:000–000 Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.
Introduction

Tobacco smoking has been causally linked to gastric cancer (IARC Working Group, 2012). Two meta-analyses of published literature considering, respectively, 32 cohort (Ladeiras-Lopes et al., 2008) and 46 case–control studies (La Torre et al., 2009) showed a significant increase in the risk of gastric cancer among smokers, although quantification of the dose–response relations remains imprecise.

The risk of gastric cancer was reported to increase with increasing dose and duration of cigarette smoking in some studies (Gonzalez et al., 2003; Ladeiras-Lopes et al., 2008; Tramacere et al., 2011; Nomura et al., 2012). Furthermore, some studies showed a stronger association between cigarette smoking and gastric cardia rather than noncardia cancer (Gonzalez et al., 2003; Freedman et al., 2007; Nomura et al., 2012), but others did not confirm this finding (Lindblad et al., 2005; Steevens et al., 2010).

Lower risks have generally been found in former compared with current smokers, and the risk seems to decrease with increasing years since stopping smoking, although this relationship was not significant in several studies (Gonzalez et al., 2003; Koizumi et al., 2004; Freedman et al., 2007; Kim et al., 2007; Zendehdel et al., 2008; IARC Working Group, 2012).

To better define and quantify the association between cigarette smoking and gastric cancer, we carried out an individual participant data meta-analysis of studies participating in the ‘Stomach cancer Pooling (StoP) Project’, a recently established consortium of epidemiological studies on risk factors for gastric cancer.

Methods

This analysis is based on data from 23 case–control studies included in the first release of the ‘StoP Project’ dataset, including 10 290 cases (6804 men and 3486 women) and 26 145 controls (15 600 men and 10 545 women) from Greece (Lagiou et al., 2004), Italy (four studies) (Buatti et al., 1989; La Vecchia et al., 1995; Lucenteforte et al., 2008; De Feo et al., 2012), Portugal (Lunet et al., 2007), Russia (Zaridze et al., 1995), Spain (two studies) (Santibanez et al., 2012; Castano-Vinyals et al., 2015), Sweden (three studies, two of which were nested in cohort studies) (Ye et al., 1999; Harris et al., 2013), China (four studies) (Setiawan et al., 2000, 2005; Mu et al., 2005; Deandrea et al., 2010), Iran (three studies) (Derakhshan et al., 2008; Pourfarzai et al., 2009; Pakseresht et al., 2011), Japan (Matsuo et al., 2013), Canada (Mao et al., 2002), and the USA (two studies) (Zhang et al., 1999). Detailed information on the aims and methods of the ‘StoP Project’ has been provided elsewhere (Pelucchi et al., 2015).

The principal investigators of participating studies were asked to provide information on cigarette smoking status (never, former, and current smoker), number of cigarettes smoked per day, duration of smoking, and time since stopping smoking, when applicable. Data were harmonized according to a prespecified format, and completeness and consistency between variables were carefully checked. For the present analysis, ever cigarette smokers were defined as participants who had smoked at least 100 cigarettes in their lifetime or more than one cigarette per day for at least 1 year, independent of the type of cigarette smoked (e.g. cigarettes with or without filter, with blond or black tobacco, hand-rolled cigarettes, etc.). Smoked forms of tobacco other than cigarettes – that is, cigars and pipes, were considered in a separate category.

Two studies (Setiawan et al., 2000; Derakhshan et al., 2008) providing information only on lifetime cigarette status (ever, never) were not considered in the dose–risk analyses on intensity and duration. We also collected information on a list of additional variables to be introduced as confounders and to define subgroups.

For two cohort studies included in the StoP Project consortium, the Swedish Mammography Cohort and the Cohort of Swedish Men (Harris et al., 2013), a nested case–control design was used by selecting four controls for each case, matched on age.

To estimate the association between cigarette smoking and gastric cancer, we used a two-stage modeling approach (Smith-Warner et al., 2006). In the first stage, we assessed the association between cigarette smoking and gastric cancer for each study by estimating the odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) using multivariable unconditional logistic regression models (for categorical variables). These models included, when available and appropriate, terms for age (< 40, 40–44, 45–49, 50–54, 55–59, 60–64, 65–69, 70–74, ≥ 75 years), sex, education/social class (study-specific low, intermediate, high), race/ethnicity (White, Hispanic/Latino, Black/African American, others), alcohol drinking (never, low: ≤ 12 g/day, intermediate: > 12 to ≤ 47 g/day, high: > 47 g/day), consumption of fruit and vegetables (study-specific tertiles), and study center (for multicentric studies). The list of study-specific confounders is presented in Supplementary Table 1 (Supplemental digital content 1, http://links.lww.com/EJCP/A94).

In the second stage, summary (pooled) effect estimates were computed using a random-effect model by computing a weighted average of the study-specific log(ORs) obtained in the first stage using as weights the inverse of the sum of the study-specific log(OR) variances and the between-study variance components (DerSimonian and Laird, 1986).

For categorical variables, heterogeneity between studies was evaluated using the Q test statistics and quantified using I² – that is, the proportion of total variation contributed by between-study variance (Higgins et al., 2003).
To investigate whether the effect of smoking was heterogeneous across strata of selected covariates, we carried out analyses stratified by age (≤55, >55 to ≤65, >65 years), sex, geographic area (Europe, Asia, America), cancer site (cardia, noncardia), cancer histotype (intestinal, diffuse, undifferentiated), and type of controls (hospital controls, population controls; controls from two nested case–control studies were considered together with the latter).

We also evaluated the influence of *Helicobacter pylori* infection on the relation between cigarette smoking and gastric cancer. We considered only studies with the information on *H. pylori* infection and compared the pooled ORs obtained using all controls with those obtained using only *H. pylori*-positive controls (assuming that all gastric cancer cases are positive for *H. pylori* infection).

We tested for the significance of linear trends across levels of smoking intensity and duration variables by estimating study-specific trends and using the Wald test *P* value deriving from the summary random-effects estimates (Smith-Warner et al., 2006).

For continuous variables, we used the functional form of the relation using one-order and two-order fractional polynomial models. The method was based on a two-stage procedure. In a first step, we fitted first-order and second-order fractional polynomial models to each study, adjusting for the aforementioned confounders. This family of models includes the linear one. In the second step, the pooled dose–risk relation was estimated through a bivariate random-effects model (Rota et al., 2010). The best-fitting model – that is, the one minimizing the model deviance, was selected when the best-fitting model was nonlinear (Royston et al., 1999).

Results

Table 1 shows the distribution of cases and controls by study, sex, age, and major selected potential confounding factors only for a descriptive purpose. Cases were older than controls [age (mean ±SD): 63 ±11 vs. 60 ±13, respectively] and had a lower social class. Overall, 8.6% of cases reported a history of stomach cancer among first-degree relatives and 11.2% reported consumption of four or more drinks/day of alcoholic beverages (i.e. >47 g/day of ethanol).

Figure 1 presents a forest plot of the study-specific and the pooled ORs for gastric cancer risk on the basis of all 23 studies participating in the consortium. The pooled estimate was 1.20 (95% CI: 1.09–1.32) for ever smokers compared with never smokers.

The pooled ORs of gastric cancer according to cigarette smoking habits are shown in Table 2. Among 21 studies reporting information on former smoking status, the pooled ORs were 1.19 (95% CI: 1.09–1.31) for ever cigarette smokers, 1.12 (95% CI: 0.99–1.27) for former

<table>
<thead>
<tr>
<th>Study center</th>
<th>Cases [N (%)]</th>
<th>Controls [N (%)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>5079 (49.4)</td>
<td>12 664 (48.4)</td>
</tr>
<tr>
<td>Greece</td>
<td>110 (1.1)</td>
<td>100 (1.4)</td>
</tr>
<tr>
<td>Italy 1</td>
<td>769 (7.5)</td>
<td>2081 (8.0)</td>
</tr>
<tr>
<td>Portugal</td>
<td>230 (2.2)</td>
<td>547 (2.1)</td>
</tr>
<tr>
<td>Italy 3</td>
<td>160 (1.6)</td>
<td>444 (1.7)</td>
</tr>
<tr>
<td>Italy 4</td>
<td>1016 (9.9)</td>
<td>1159 (4.4)</td>
</tr>
<tr>
<td>Portugal (Lunet et al., 2007)</td>
<td>602 (5.7)</td>
<td>1867 (6.4)</td>
</tr>
<tr>
<td>Russia (Zardze et al., 2000)</td>
<td>450 (4.4)</td>
<td>611 (2.3)</td>
</tr>
<tr>
<td>Spain 1</td>
<td>441 (4.3)</td>
<td>3440 (13.2)</td>
</tr>
<tr>
<td>Spain 2</td>
<td>401 (3.9)</td>
<td>455 (1.7)</td>
</tr>
<tr>
<td>Sweden 1</td>
<td>89 (0.9)</td>
<td>352 (1.3)</td>
</tr>
<tr>
<td>Sweden 2</td>
<td>161 (1.6)</td>
<td>644 (2.5)</td>
</tr>
<tr>
<td>Sweden 3</td>
<td>561 (5.5)</td>
<td>1164 (4.5)</td>
</tr>
<tr>
<td>Asia</td>
<td>3197 (31.1)</td>
<td>6234 (23.8)</td>
</tr>
<tr>
<td>China 1</td>
<td>266 (2.6)</td>
<td>533 (2.0)</td>
</tr>
<tr>
<td>China 2</td>
<td>206 (2.0)</td>
<td>415 (1.6)</td>
</tr>
<tr>
<td>China 3</td>
<td>711 (7.1)</td>
<td>711 (2.7)</td>
</tr>
<tr>
<td>China 4</td>
<td>133 (1.3)</td>
<td>431 (1.6)</td>
</tr>
<tr>
<td>Iran 1</td>
<td>217 (2.1)</td>
<td>394 (1.5)</td>
</tr>
<tr>
<td>Iran 2</td>
<td>286 (2.8)</td>
<td>304 (1.2)</td>
</tr>
<tr>
<td>Iran 3</td>
<td>118 (1.1)</td>
<td>119 (0.5)</td>
</tr>
<tr>
<td>Japan</td>
<td>1290 (12.2)</td>
<td>3027 (12.7)</td>
</tr>
<tr>
<td>North America</td>
<td>2014 (19.6)</td>
<td>7247 (27.7)</td>
</tr>
<tr>
<td>Canada</td>
<td>1182 (11.5)</td>
<td>5033 (19.3)</td>
</tr>
<tr>
<td>USA 1</td>
<td>132 (1.3)</td>
<td>132 (0.5)</td>
</tr>
<tr>
<td>USA 2</td>
<td>700 (6.8)</td>
<td>2082 (8.0)</td>
</tr>
</tbody>
</table>

Sex

- **Male**: 6804 (66.1) 15 600 (59.7)
- **Female**: 3486 (33.9) 10 545 (40.3)

Age

- **<40**: 355 (3.4) 1917 (7.3)
- **40–44**: 362 (3.5) 1542 (5.9)
- **45–49**: 608 (5.9) 2009 (7.7)
- **50–54**: 995 (9.7) 2700 (10.3)
- **55–59**: 1340 (13.0) 3128 (12.0)
- **60–64**: 1616 (15.7) 4079 (15.6)
- **65–69**: 1864 (18.1) 4240 (16.2)
- **70–74**: 1864 (18.1) 3857 (14.8)
- **≥75**: 1286 (12.5) 2673 (10.2)

Social class

- **Low**: 5416 (52.6) 10 625 (40.6)
- **Intermediate**: 2697 (26.2) 7857 (30.1)
- **High**: 1242 (12.1) 5422 (20.7)
- **Missing**: 935 (9.1) 2241 (8.6)

History of stomach cancer in first-degree relatives

- **No**: 5139 (49.9) 13 092 (50.1)
- **Yes**: 885 (8.6) 1287 (4.8)
- **Missing**: 4266 (41.5) 11 766 (45.0)

Vegetables and fruit intake

- **Low**: 3028 (29.4) 6812 (26.1)
- **Intermediate**: 3107 (30.2) 7649 (29.3)
- **High**: 2959 (29.1) 8224 (31.5)
- **Missing**: 1160 (11.3) 3460 (13.2)

Alcohol drinking (g/day)

- **Never**: 2194 (21.3) 6231 (23.8)
- **Low (≤12)**: 2069 (20.3) 7296 (27.9)
- **Intermediate (>12 and ≤47)**: 2418 (23.5) 5429 (20.8)
- **High (>47)**: 1155 (11.2) 2313 (8.8)
- **Missing**: 2434 (23.7) 4876 (18.6)

No information available for study Iran 3 (Derakhshan et al., 2008).

No information available for studies China 1 (Deandrea et al., 2010), Canada (Mao et al., 2002), China 3 (Setiawan et al., 2007), Iran 3 (Derakhshan et al., 2008), USA 2 (unpublished data, J. Muscat), Sweden 1 (Harris et al., 2013) and Sweden 2 (Harris et al., 2013).

No information available for studies USA 1 (Zhang et al., 1999), China 4 (Setiawan et al., 2000) and Iran 3 (Derakhshan et al., 2008).

Alcohol drinking was not available in the category of consumption for studies Iran 2 (Pakereesh et al., 2011), China 3 (Setiawan et al., 2005), Sweden 3 (Ye et al., 1999), China 4 (Setiawan et al., 2000) and Iran 3 (Derakhshan et al., 2008).

Copyright © 2016 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.
cigarette smokers, and 1.25 (95% CI: 1.11–1.40) for current smokers compared with never smokers. Among current smokers, the risk increased with the number of cigarettes smoked per day. Compared with never smokers, ORs were 1.08 (95% CI: 0.91–1.28) for 1–10 cigarettes per day, 1.30 (95% CI: 1.16–1.45) for 11–20 cigarettes per day, and 1.32 (95% CI: 1.10–1.58) for more than 20 cigarettes per day, with a significant trend in risk ($P<0.01$). The risk also increased with increasing duration of smoking (P for trend <0.01), with ORs of 1.04 (95% CI: 0.94–1.16) for up to 30 years of smoking, 1.32 (95% CI: 1.17–1.49) for 31–40 years of smoking, and 1.33 (95% CI: 1.14–1.54) for more than 40 years of smoking compared with never smokers. A significant decreasing trend in risk was found with increasing time since stopping cigarette smoking ($P<0.01$), taking current smokers as a reference group.

Study-specific and pooled ORs of gastric cancer for former and current smokers according to cigarette smoking intensity are shown in Fig. 2. Heterogeneity between studies was low to moderate (I^2 between 19 and 56%) across categories of consumption.

Figure 3 shows the modeled relation between smoking intensity (a) and duration (b), considered as continuous variables, and gastric cancer risk. For both variables, the best-fitting model was the one with powers $P_1 = −2$ and $P_2 = 2$ — that is, log(OR) = $\beta_1 X^{-2} + \beta_2 X^2$. The estimated regression coefficients were $\beta_1 = −0.00002$ and $\beta_2 = 0.000023$ for smoking intensity and $\beta_1 = −1.46E − 06$ and $\beta_2 = 0.000136$ for duration. Overall, duration appeared to have a somewhat stronger effect on risk than intensity. These graphs suggest that the intensity–risk and duration–risk relationships have a strong nonlinear component ($P<0.001$).

Stratified analyses according to smoking intensity are shown in Fig. 4 and Supplementary Table 2 (Supplemental digital content 2, http://links.lww.com/EJCP/A95). The ORs for high intensity of cigarette smoking (i.e. >20 cigarettes per day) were similar in men (OR = 1.44, 95% CI: 1.00–2.08) and women (OR = 1.42, 95% CI: 1.18–1.72), and higher in patients aged 56–65 years (OR = 1.64, 95% CI: 1.33–2.03) and in studies carried out in Asia (OR = 1.71, 95% CI: 1.08–2.71) than in the other groups. However, none of these differences was statistically significant. Risks of gastric cardia cancer were somewhat higher than those of noncardia gastric cancer in former (ORs = 1.30 and 1.05, respectively), light (ORs = 1.71 and 0.96, respectively), and moderate cigarette smokers (ORs = 1.55 and 1.21, respectively).
Table 2 Pooled odds ratios and 95% confidence intervals for gastric cancer according to cigarette and tobacco smoking habits in the Stomach cancer Pooling (StoP) Project consortium

<table>
<thead>
<tr>
<th>Cases [N (%)]</th>
<th>Controls [N (%)]</th>
<th>OR (95% CI) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>10 290</td>
<td>26 145</td>
</tr>
<tr>
<td>Cigarette smoking status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never smoker</td>
<td>4261 (41.4)</td>
<td>11 742 (44.9)</td>
</tr>
<tr>
<td>Ever cigarette smoker</td>
<td>5814 (56.5)</td>
<td>13 910 (53.2)</td>
</tr>
<tr>
<td>Missing</td>
<td>93 (0.9)</td>
<td>150 (0.6)</td>
</tr>
<tr>
<td>Cigarette smoking status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never smoker</td>
<td>4122 (41.1)</td>
<td>11 369 (44.4)</td>
</tr>
<tr>
<td>Other than cigarette smoker</td>
<td>5510 (54.9)</td>
<td>13 539 (52.9)</td>
</tr>
<tr>
<td>Missing</td>
<td>122 (1.2)</td>
<td>343 (1.3)</td>
</tr>
</tbody>
</table>

Time since stopping cigarette smoking (years) | 1.20 (1.09–1.32) |

Total b

<table>
<thead>
<tr>
<th>Cases [N (%)]</th>
<th>Controls [N (%)]</th>
<th>OR (95% CI) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cigarette smoking status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never smoker</td>
<td>4122 (41.1)</td>
<td>11 369 (44.4)</td>
</tr>
<tr>
<td>Current cigarette smoker</td>
<td>2727 (27.2)</td>
<td>7361 (28.8)</td>
</tr>
<tr>
<td>Missing</td>
<td>2783 (27.7)</td>
<td>6178 (24.1)</td>
</tr>
</tbody>
</table>

Intensity (cigarettes per day) | 1.06 (0.76–1.48) | 0.73 (0.53–1.01) |

0 to 10 | 767 (6.7) | 1728 (6.8) | 1.08 (0.91–1.28) |

Time since stopping cigarette smoking (years) | 0.91–1.28 |

> 10 to ≤ 20 | 2210 (22.0) | 6947 (27.1) | 1.04 (0.94–1.16) |

> 20 (median value: 30) | 1420 (14.1) | 3029 (11.8) | 1.45 (1.18–1.79) |

Missing | 507 (5.1) | 917 (3.6) | - | 0.0001 |

Cigarette smoking duration (years) | 0.0001 |

0 to 30 | 2210 (22.0) | 6947 (27.1) | 1.04 (0.94–1.16) |

> 30 to ≤ 40 | 1420 (14.1) | 3029 (11.8) | 1.45 (1.18–1.79) |

> 40 (median value: 47) | 1660 (16.5) | 2999 (11.7) | 1.53 (1.14–1.54) |

Total c

<table>
<thead>
<tr>
<th>Cases [N (%)]</th>
<th>Controls [N (%)]</th>
<th>OR (95% CI) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time since stopping cigarette smoking (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never smoker</td>
<td>3204 (41.8)</td>
<td>8185 (44.9)</td>
</tr>
<tr>
<td>0 to < 10</td>
<td>656 (8.6)</td>
<td>1504 (8.3)</td>
</tr>
</tbody>
</table>

Oral smoking duration (years) | 0.92–1.31 |

10 to < 20 | 515 (6.7) | 1392 (7.6) | 1.04 (0.90–1.19) |

≥ 20 (median value: 27) | 615 (8.0) | 1728 (9.5) | 1.00 (0.84–1.19) |

Missing | 122 (1.6) | 343 (1.9) | - | 0.26 |

P value for trend | 0.0001 |

Time since stopping cigarette smoking (years) | 0.26 |

Current cigarette smoker | 2297 (30.0) | 4616 (25.3) | 1 |

0 to < 10 | 656 (8.6) | 1504 (8.3) | 0.87 (0.72–1.05) |

P=0.22 |

10 to < 20 | 515 (6.7) | 1392 (7.6) | 0.80 (0.70–0.92) |

≥ 20 (median value: 27) | 615 (8.0) | 1728 (9.5) | 0.79 (0.63–0.93) |

Other than cigarette smoker | 122 (1.6) | 343 (1.9) | - | 0.79 |

Missing | 248 (3.2) | 453 (2.5) | - |

P value for trend | 0.007 |

Discussion

This global dataset confirms the association between cigarette smoking and the risk of gastric cancer. This is the largest individual participant analysis on gastric neoplasia, including comprehensive and uniform information on relevant covariates, and thus provides the most precise and valid estimates of several quantitative aspects of the association. A 25% excess risk of gastric cancer was found among current smokers. The risk increased significantly with cigarette smoking intensity and duration, to reach 32% for smokers of more than 20 cigarettes per day and 33% for smoking duration of more than 40 years, compared with never smokers. The increase in risk was steeper for duration than for dose. The risk decreased with time since stopping smoking and approached the level of never cigarette smokers about 10 years after quitting.

These results are generally consistent with previous meta-analyses. Our OR estimates for current cigarette smokers were, if anything, slightly lower than those on the basis of published studies, which found risks ranging between 1.5 and 1.7 (Tredaniel et al., 1997; Ladeiras-Lopes et al., 2008; La Torre et al., 2009; Bonequi et al., 2013), resulting in an estimated worldwide population attributable fraction of 19.5% in men and 3.0% in women (Peleiteiro et al., 2015). Publication bias may have led to an overestimation of the risk in the published literature. In fact, only about one-third of the studies included in this pooled analysis were present respectively. For patients reporting high intensity of cigarette smoking, the ORs were 1.58 for cardia (95% CI: 1.11–2.24) and 1.29 for noncardia (95% CI: 1.03–1.61) gastric cancer, and in terms of histotype, 1.28 (95% CI: 0.90–1.81) for intestinal-type and 1.57 (95% CI: 1.12–2.20) for diffuse-type gastric cancer. Effects of cigarette smoking on the risk of gastric cancer did not materially change when considering only studies with information on H. pylori infection (>20 cigarettes per day, OR=1.40, 95% CI: 0.91–2.15) even when the analysis was restricted to H. pylori-positive controls (>20 cigarettes per day, OR=1.48, 95% CI: 0.93–2.36). Risks for smoking appeared to be somewhat higher in studies with hospital controls (>20 cigarettes per day, OR=1.58, 95% CI: 1.33–1.87) than in those with population controls (>20 cigarettes per day, OR=1.18, 95% CI: 0.87–1.60).

Copyright © 2016 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.
in previous meta-analyses of case-control (La Torre et al., 2009) or cohort studies (Ladeiras-Lopes et al., 2008).

In terms of the dose-risk relation for intensity and duration, previous results are limited. A meta-analysis of cohort studies (Ladeiras-Lopes et al., 2008) showed an increasing trend in risk with smoking intensity, with a relative risk varying from 1.3 for the lowest dose to 1.7 for 30 cigarettes per day. A significant trend in gastric cancer risk with increasing duration was reported in the European Investigation into Cancer and Nutrition (EPIC) (Gonzalez et al., 2003) and in the multiethnic cohort study (Nomura et al., 2012). Although the association of gastric cancer with smoking has long been recognized, this study confirms that the risk is modest even at high doses, despite the increasing dose-risk gradient. Although the association with cigarette smoking is weaker for gastric cancer than for lung cancer, our pooled analysis finds a stronger relation with duration than with dose, as has been shown for lung cancer.

An interesting finding of our study is the lower gastric cancer risk for former smokers compared with current smokers, particularly, 10 years or more after stopping. This has been suggested by previous studies (Gonzalez et al., 2003; Ladeiras-Lopes et al., 2008; Nomura et al., 2012) and adds stomach cancer to the list of diseases whose risk is favorably affected by stopping smoking.

This pooled analysis reported similar findings in men and women. With reference to the site of cancer, two large cohort studies reported a higher risk of gastric cardia than...
noncardia cancer in current smokers (Gonzalez et al., 2003; Nomura et al., 2012). A recent meta-analysis including 10 studies on gastric cardia adenocarcinoma reported an over two-fold risk for smokers of more than 40 years compared with never smokers (Tramacere et al., 2011). A differential role of smoking [besides H. pylori (Kamangar et al., 2006)] in the etiology of different gastric cancer subsites has also been hypothesized to contribute toward the diverging trends in the risk of gastric cardia and noncardia cancers over the last decades (Gonzalez et al., 2003). In this investigation, although the ORs for high-intensity cigarette smokers were not statistically heterogeneous between subsites (i.e. 1.40 for gastric cardia and 1.29 for gastric noncardia cancer), the risk tended to be higher for gastric cardia and patterns tended to differ. In fact, gastric cardia cancer risk was increased and higher than that for noncardia subsite in light to moderate smokers, in long-term smokers, and among former smokers. Thus, the dose–risk and time–risk relations might be different between gastric cardia and noncardia cancer, suggesting underlying differences in the biological mechanisms involved.

Many mechanisms may explain the effect of tobacco smoking on gastric cancer occurrence. Several carcinogens contained in tobacco products, including N-nitroso compounds, have been involved in the etiology of gastric cancer (Mirvish, 1995). In vitro, a carcinogenic effect of tobacco smoke on the gastric mucosa has been reported (Tayler and Piper, 1977). In a population-based gastroscopic screening study, smoking has also been associated significantly with the development of precursor lesion of gastric cancer – that is, dysplasia, chronic atrophic gastritis, and intestinal metaplasia (Knellere et al., 1992). In gastric cancer cases, levels of stable DNA adducts were significantly higher in the DNA of smokers than in that of nonsmokers (Dyke et al., 1992). Some studies investigated gene interaction with tobacco smoking in gastric cancerogenesis. Polymorphisms of GSTT1, SULT1A1, CYP1a1, and NAT2 genes appear to be implicated in modulating individual susceptibility in the relation between smoking and gastric cancer (Agudo et al., 2006; Lee et al., 2006; Boccia et al., 2007). Furthermore, the hypermethylation of the CDH1 gene was observed preferentially in gastric tumors from smokers rather than nonsmokers (Poplawski et al., 2008).

Among the strengths of the study, the ‘StoP Project’ included original and individual data on smoking on over 10 000 cases and 26 000 controls, which provided a unique opportunity to investigate and accurately quantify the dose–risk and temporal factors–risk relationships and, among former smokers, the pattern of risk with time since stopping. The individual level approach has several advantages compared with study-level meta-analyses, specifically the availability of detailed and uniform information on important covariates (Ioannidis et al., 2013). For instance, we could investigate the confounding effect of H. pylori infection by restricting the analysis to controls positive for H. pylori infection (all cases were
Pooled odds ratios (ORs) and 95% confidence intervals (CIs) for gastric cancer according to the intensity of cigarette smoking in strata of sex, age, geographic area, cancer site, cancer histotype, *Helicobacter pylori* infection, and control recruitment in the Stomach cancer Pooling (StoP) Project consortium. (a) Considered studies: Italy 1 (La Vecchia et al., 1995), Italy 2 (Lucenteforte et al., 2008), Italy 3 (De Feo et al., 2012), Italy 4 (Buiatti et al., 1989), Canada (Mao et al., 2001, 2002), Russia (Zaridze et al., 2000), Iran 1 (Pourfarzi et al., 2009), Iran 2 (Pakseresht et al., 2011), USA 1 (Zhang et al., 2012), Portugal (Lunet et al., 2007), Sweden 1 (Harris et al., 2013), Sweden 2 (Harris et al., 2013), Spain 1 (Castano-Vinyals et al., 2015), Sweden 3 (Ye et al., 1999), Spain 2 (Santibanez et al., 2012). (b) Considered studies: Italy 2 (Lucenteforte et al., 2008), Italy 3 (De Feo et al., 2012), Italy 4 (Buiatti et al., 1989), Canada, (Mao et al., 2002), Russia (Zaridze et al., 2000), Iran 1 (Pourfarzi et al., 2009), Iran 2 (Pakseresht et al., 2011), USA 1 (Zhang et al., 1999), Japan (Matsuoka et al., 2013), Portugal (Lunet et al., 2007), Spain 1 (Castano-Vinyals et al., 2015), Sweden 3 (Ye et al., 1999), Spain 2 (Santibanez et al., 2012). (c) The studies Italy 3 (De Feo et al., 2012) and Spain 2 (Santibanez et al., 2012) were not considered because no information was available for controls, or controls were all H. pylori negative. Considered studies: China 2 (Mu et al., 2005), Iran 1 (Pourfarzi et al., 2009), Iran 2 (Pakseresht et al., 2011), Japan (Matsuoka et al., 2007), Russia (Zaridze et al., 2000), Spain 1 (Castano-Vinyals et al., 2015), Sweden 3 (Ye et al., 1999). (d) Pooled ORs were computed considering all cases and only controls positive for *H. pylori* infection. (e) Considered studies: Italy 1 (La Vecchia et al., 1995), China 1 (Deandrea et al., 2010), Italy 2 (Lucenteforte et al., 2008), Italy 3 (De Feo et al., 2012), Greece (Lagiou et al., 2004), USA 1 (Zhang et al., 1999), Japan (Matsuoka et al., 2013), USA 2 (unpublished data, J Muscat), Spain 2 (Santibanez et al., 2012). (f) Considered studies: Italy 4, Canada (Johnson), China 2 (Mu et al., 2005), Iran 1 (Pourfarzi et al., 2009), Iran 2 (Pakseresht et al., 2011), China 3 (Setiawan et al., 2005), Portugal (Lunet et al., 2007), Sweden 1 (Harris et al., 2013), Sweden 2 (Harris et al., 2013), Spain 1 (Castano-Vinyals et al., 2015), Sweden 3 (Ye et al., 1999). The Russian study (Zaridze et al., 2000) was not considered in this analysis because it included both hospital and general population controls.
supposed to be *H. pylori* infected). This sensitivity analysis confirmed the results of the main analysis, thus providing further evidence of a role of cigarette smoking independent from that of *H. pylori*. Confounding from other specific factors, such as consumption of salted and smoked foods, cannot entirely be ruled out. Also, we found a considerable heterogeneity between studies that was not explained by age, sex, and geographic area. Among potential explanations for the reported heterogeneity is that the type of cigarettes commonly smoked (e.g., with or without filter, with blond or black tobacco, hand-rolled, etc.) varies in different countries, together with their variable tar and nicotine concentrations. We could not address the role of such factors, however, as only a minority of studies had available information on the type of cigarette smoked. The association was, if anything, stronger in studies using hospital controls. This is reassuring as it has been suggested that smokers may be over-represented among hospital controls, given the higher hospitalization rates and longer hospital stays in smokers compared with nonsmokers. In conclusion, this investigation confirms a detrimental, higher hospitalization rates and longer hospital stays in smokers compared with nonsmokers.

In this paper, we report a detrimental effect of tobacco smoke (i.e., cigarette smoking) on gastric cancer risk, which is consistent with previous reports. However, the meta-analysis was not explained by age, sex, and geographic area. Among potential explanations for the reported heterogeneity is the type of cigarettes commonly smoked (e.g., with or without filter, with blond or black tobacco, hand-rolled, etc.) varies in different countries, together with their variable tar and nicotine concentrations. We could not address the role of such factors, however, as only a minority of studies had available information on the type of cigarette smoked. The association was, if anything, stronger in studies using hospital controls. This is reassuring as it has been suggested that smokers may be over-represented among hospital controls, given the higher hospitalization rates and longer hospital stays in smokers compared with nonsmokers.

In conclusion, this investigation confirms a detrimental effect of tobacco smoke (i.e., cigarette smoking) on gastric cancer risk, which is consistent with previous reports. However, the meta-analysis was not explained by age, sex, and geographic area. Among potential explanations for the reported heterogeneity is the type of cigarettes commonly smoked (e.g., with or without filter, with blond or black tobacco, hand-rolled, etc.) varies in different countries, together with their variable tar and nicotine concentrations. We could not address the role of such factors, however, as only a minority of studies had available information on the type of cigarette smoked. The association was, if anything, stronger in studies using hospital controls. This is reassuring as it has been suggested that smokers may be over-represented among hospital controls, given the higher hospitalization rates and longer hospital stays in smokers compared with nonsmokers.

In conclusion, this investigation confirms a detrimental effect of tobacco smoke (i.e., cigarette smoking) on gastric cancer risk, which is consistent with previous reports. However, the meta-analysis was not explained by age, sex, and geographic area. Among potential explanations for the reported heterogeneity is the type of cigarettes commonly smoked (e.g., with or without filter, with blond or black tobacco, hand-rolled, etc.) varies in different countries, together with their variable tar and nicotine concentrations. We could not address the role of such factors, however, as only a minority of studies had available information on the type of cigarette smoked. The association was, if anything, stronger in studies using hospital controls. This is reassuring as it has been suggested that smokers may be over-represented among hospital controls, given the higher hospitalization rates and longer hospital stays in smokers compared with nonsmokers.

Acknowledgements

The authors thank the European Cancer Prevention (ECP) Organization for providing support for the project meetings.

This project was supported by the Italian Ministry of Health (Young Researchers, GR-2011-02347943 to S.B.; and General Directorate of European and International Relations), the Fondazione Italiana per la Ricerca sul Cancro (FIRC), and the Associazione Italiana per la Ricerca sul Cancro, project no. 16715 (Investigator Grant). Matteo Rota and Delphine Praud were supported by a fellowship from the FIRC. Bárbara Peleteiro was supported by an individual grant from the ‘Fundação para a Ciência e a Tecnologia’ (SRFH/BPD/75918/2011).

Conflicts of interest

There are no conflicts of interest.

References

Copyright © 2016 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

