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A GEOMETRIC CHARACTERIZATION OF TORIC SINGULARITIES

JOAQUÍN MORAGA AND ROBERTO SVALDI

Abstract. Given a projective contraction π : X → Z and a log canonical pair (X,B) such that −(KX +B)
is nef over a neighborhood of a closed point z ∈ Z, one can define an invariant, the complexity of (X,B)
over z ∈ Z, comparing the dimension of X and the relative Picard number of X/Z with the sum of the
coefficients of those components of B intersecting the fibre over z. We prove that the complexity of (X,B)
over z ∈ Z is non-negative and that when it is zero then (X, ⌊B⌋) → Z is formally isomorphic to a morphism
of toric varieties around z ∈ Z. In particular, considering the case when π is the identity morphism, we get
a geometric characterization of singularities that are formally isomorphic to toric singularities. This gives a
positive answer to a conjecture due to Shokurov.
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1. Introduction

Throughout this paper, we work over an algebraically closed field K of characteristic zero.
A normal algebraic varietyX is a toric variety if it contains a dense open subset isomorphic to an algebraic

torus (K∗)n such the natural self-action of the torus extends to the whole of X . A morphism X → Y of
toric varieties is a toric morphism if it is equivariant with respect to the torus actions on both X and Y .

Toric morphisms are some of the simplest morphisms we can encounter in birational geometry: indeed,
they can be described just in terms of simple combinatorial data; more precisely, a toric morphism X → Y
is encoded by a linear transformation between Q-vector spaces that maps the fan structure inducing X onto
the one inducing Y while preserving the cones composing both structures. Toric morphisms are also easy to
describe from an algebraic standpoint as they naturally correspond to monomial maps. From a geometric
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2 J. MORAGA AND R. SVALDI

standpoint, though, it is a difficult task to prove that a given morphism X → Z is toric: indeed, this
task boils down to either finding a dense of open set in X isomorphic to a torus with respect to which the
morphism is equivariant, or to finding local coordinates in which the morphism can be expressed in monomial
form.

In [33], Shokurov unified these two viewpoints by proposing a characterization of formally toric morphisms.
A morphism π : X → Z is formally toric at a closed point z ∈ Z if, when taking the base change of X to the
formal completion of Z at z, the base change of π becomes isomorphic to the completion of a morphism of
toric varieties, see Definition 3.42 for more details. To formalize this characterization, Shokurov defines a new
numerical invariant, the complexity, in the relative setting, cf. Definition 3.15: given a projective contraction
π : X → Z of quasi-projective normal varieties, a closed point z ∈ Z, and a pair (X,B), B =

∑
biBi, the

complexity of (X,B) at z ∈ Z is defined as

cz(X/Z,B) := dimX + dimQ ClQ(X/Z)−
∑

Bi∩π−1(z) 6=∅

bi.

Shokurov conjectured that cz(X/Z,B) ≥ 0, whenever −(KX + B) is nef in a neighborhood of z ∈ Z, and
moreover that equality holds exactly when X → Z is formally toric at z.

The main goal of this article is to provide the following full solution to Shokurov’s conjecture.

Theorem 1. Let (X/Z,B) be a log canonical pair over a normal variety Z and let z ∈ Z be a closed point.
Assume that −(KX +B) is nef over a neighborhood of z ∈ Z. Let Σ be a decomposition of B. Then,

cz(X/Z,B) ≥ 0.

Furthermore, if the equality
cz(X/Z,B) = 0

holds, then the following conditions are satisfied:

(1) KX +B ∼Q,Z 0;
(2) X → Z is formally toric at z; and,
(3) under the formal isomorphism of (2), the components of ⌊B⌋ are mapped to the completion of toric

invariant divisors.

An important step in proving the above result is the following characterization of germs of singularities
supporting log canonical pairs that are formally isomorphic to toric singularities, cf. Definition 3.44. This
result generalizes [21, Theorem 18.22] to singularities that may fail to be Q-factorial. For the germ of a
normal singularity x ∈ X , we denote by Cl(Xx) the local class group at x.

Theorem 2. Let x ∈ (X,B) be a log canonical singularity. Writing B =
∑n

i=1 biBi where the bi are positive
and the Bi are prime divisors, then,

dimX + rankCl(Xx)−
n∑

i=1

bi ≥ 0.

If the equality holds, then (X, ⌊B⌋) is a formally toric pair at x.

Over the course of the years, several authors have worked on Shokurov’s conjecture:

(1) in [21], Kollár proved the conjecture for Q-factorial log canonical germs;
(2) in dimension two, McKernan and Keel proved the conjecture for projective surfaces of Picard rank

one, [23], while, as already mentioned above, Shokurov proved the conjecture for arbitrary morphisms
of surfaces;

(3) in an unpublished note, Chelstov proved the conjecture for Q-factorial projective varieties of Picard
number 1;
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(4) in [32], Prokhorov proved the conjecture for certain projective 3-folds. The method of his proof relies
on the minimal model program in dimension three;

(5) In [35], Yao gives a proof of the above conjecture for log smooth projective pairs (X,D) with
KX +D ∼Q 0. Yao’s proof is inspired by the mirror-symmetry techniques of [17];

(6) finally, in [10], the authors settle the conjecture in the non-relative case, i.e., for proper varieties
mapping to a point.

Rather than proving Theorem 1 directly, we shall prove a more general result providing a solution to
Shokurov’s conjecture in a wider setting. The wider context we consider is that of generalized pairs, see
§3.2 .The benefit of this choice is that we can switch from the category of log canonical pairs with anti-nef
canonical divisor to that of generalized log canonical pairs which are Q-trivial over the base, cf. (1.1). While
this choice may appear artificial, we want to underline how it makes for a much more advantageous approach:
for instance, the property of being generalized log canonical and Q-trivial over the base is preserved under
any birational contraction.

In [23], McKernan and Keel introduced a finer version of the complexity which in this article we call
fine complexity. A decomposition Σ of an effective Weil R-divisor B is an effective formal sum 0 ≤ Σ :=∑k

i=1 biBi ≤ B where the Bi are effective Weil divisors. The fine complexity of (X/Z,B) with respect to a
decomposition Σ of B at a closed point z ∈ Z is

cz(X/Z,B; Σ) := dimX + dimQ〈Σ/Z〉 − |Σ|,

where 〈Σ/Z〉 ⊂ ClQ(X/Z) denotes the span of the Weil divisors Bi used to define Σ and |Σ| is the sum of the
coefficients bi of those Bi that intersect the fiber over z. It should be clear that any boundary B comes with a
natural decomposition given by the decomposition into its prime components. It is often beneficial, though,
to work with other possible decompositions than just this standard one, a principle already exploited in [10].
Indeed, doing so allows for more flexibility, for example, when performing adjunction along the general fibre
of a morphism.

Although the definition of complexity may appear to be more natural at a first glance, one of the advan-
tages of instead using the fine complexity is that the latter is better-behaved under adjunction to a general
fiber, as it was already explored in [10]. Unfortunately, it is hard to control the fine complexity of a pair
(X,B), in turn, when doing adjunction along a divisorial log canonical center E of B. The issue comes
from codimension one points of E contained in the singular locus of X : at these points, the restriction to
E of a decomposition Σ of B will typically fail to yield a decomposition for the different of B along E. To
overcome this issue, we define a new complexity-like invariant, the orbifold complexity, see Definition 3.24,
that is specifically designed to deal with the presence of orbifold structures at codimension one points of a
divisorial lc center of a pair. Theorem 8.1 provides an analogous version of Theorem 3 in the more general
framework of the orbifold complexity of (X/Z,B,M).

Theorem 3 (cf. Theorem 8.1). Let (X/Z,B,M) be a generalized log canonical pair over Z. Assume that

KX +B +MX ∼Q,Z 0.(1.1)

Let z ∈ Z be a closed point and let Σ =
∑k
i=1 biBi be a decomposition of B. Then,

cz(X/Z,B) ≥ cz(X/Z,B; Σ) ≥ ĉz(X/Z.B; Σ) ≥ 0.

Moreover, if the equality

cz(X/Z,B) = 0

holds, then the following conditions are satisfied:

(1) X → Z is formally toric over z ∈ Z;
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(2) the components of ⌊B⌋ corresponds to toric invariant divisors via the formal isomorphism claimed
in (1);

(3) all the prime divisors on X corresponding to toric invariant divisors via the formal isomorphism in
(1) appear in the support of Σ; and,

(4) the b-divisor M is a torsion b-divisor over a neighborhood of z.

We emphasize that all the theorems of the paper also hold when replacing the relative Class group with
the group of Q-divisors modulo algebraic equivalence over the base.

To conclude the introduction, we wish to emphasize how the characterization of toric morphisms proven
in this article is expected to play an important role in the birational classification of algebraic varieties.
One basic strategy to understand the structure of germs of singularities of the form x ∈ (X,B), within the
framework of the Minimal Model Program, is to construct simple partial resolutions which are not necessarily
log smoothings of (X,B), but that still carry enough structure to make the invariants of the germ x ∈ X
simpler to compute on the new model. In general, it is expected that there exist special partial resolutions
where the exceptional locus displays a toroidal structures – such model is called a toroidalization of the
given algebraic singularity. In this sense, Theorem 2 shows that if the boundary B has many components
going through x (weighted by their coefficient) then we do not really need to pass to a toroidalization, as
the singularity x ∈ X already has a toroidal structure. In relation to these ideas, for example, in [30] the
first author proves that a Fano type surface with a large cyclic automorphism admits a birational K∗-action.
In [31], the first author proves that a Fano type variety of dimension n with a large finite automorphism
group of rank n is a compactification of (K∗)n. The characterization of toric varieties and morphisms using
complexity, as developed in [10] and in this article, is one of the main tools used to prove such result.
We expect that the characterization of formally toric morphisms Theorem 3, to have applications to the
toroidalization of Fano type morphisms.

Acknowledgements. The authors would like to thank V.V. Shokurov for many useful comments on his
conjecture and C. Spicer and M. Mauri for reading a first draft of the paper.

2. Strategy of proof

In this section, we give a brief description of the proof of the main result,Theorem 3, which is essentially
divided in five steps.

In Section 3, we introduce the concept of orbifold complexity, which refines both complexity and fine com-
plexity. Orbifold complexity does not increase when performing adjunction along a divisorial (generalized)
log canonical center, cf. Lemma 3.36. This feature is our main motivation for introducing this new concept
in the first instance. As the orbifold complexity is always smaller than the fine complexity, Lemma 3.25, for
our purposes it will suffice to prove that the orbifold complexity is non-negative and a given morphism is
formally toric when the orbifold complexity is zero.

In Section 4, we show that Theorem 3 holds for the orbifold complexity of projective generalized pairs
with Q-trivial generalized log divisor. Essentially, the proof follows from the proof of [10, Theorem 1.2] with
some technical adjustments. First, we prove that by running a suitable MMP, we can construct a model
on which the orbifold complexity does not increase and that is a Mori dream space. Then, we show that
such model is a projective toric variety in analogy with [10, Theorem 3.1]. To conclude, we show that all
the transformations we performed to construct such toric model correspond either to extractions of toric
divisors, Lemma 4.9, or to isomorphisms in codimension one, which naturally preserve the toric structure.

The next step is then proved in Section 5: we prove that the orbifold complexity is always non-negative.
The main strategy is to reduce the general case to the projective case. To this end, we show that it is
possible to extract a divisorial glc center E contained in the fiber over z ∈ Z, without increasing the orbifold



A GEOMETRIC CHARACTERIZATION OF TORIC SINGULARITIES 5

complexity of a generalized pair (X/Z,B+M). The orbifold complexity of the generalized pair (E,BE+ME)
induced by adjunction along E will also be at most that of (X/Z,B +M). If the orbifold complexity of
(X/Z,B + M) was negative, then the same would hold for the projective generalized log canonical pair
(E,BE +ME) which is Q-trivial, since E is contained in the fiber over z and KX + B +M ∼Q,Z 0. This
contradicts the previous step. Hence, the orbifold complexity is always non-negative. In order to extract
E, we may have to pass to a suitable birational model of X , hence we need to keep track of the orbifold
complexity when running the machinery of the MMP: this is explained in § 3.4. Moreover, we also show
that if a generalized pair (X/Z,B +M) has orbifold complexity 0 over z ∈ Z then the fiber over z ∈ Z
must contain a glc center; under this assumption, a decomposition Σ of B realizing the 0 of the orbifold
complexity can only be the decomposition into the prime components of B. These reductions are very useful
in order to prove the problem in the general case.

We are then ready to prove the local case of the Theorem 8.1, i.e., the case when X → Z is simply
the identity morphism of a germ, cf. Section 7. This case yields Theorem 2. Working on a germ of a glc
singularity (x ∈ X,B +M), we proceed to define a special class of birational extractions, formally toric plt
blow-ups: these are generalizations of so-called plt blowups, see §6. A formally toric plt blow-up is a proper
birational morphism Y → X that extracts a unique divisor E over x ∈ X which is toric and such that the
torus invariant prime divisors of E can be lifted to prime divisors Ei on the plt blow-up with nice singularities
over x. We show that such partial resolution always exists for a germ of a generalized log canonical pair with
orbifold complexity zero, cf. Proposition 6.6. We then analyze the relative Cox ring Cox(Y/X) of a formally
toric plt blow-up Y → X : we show that the ideal mCox of Cox(Y/X) generated by the canonical elements
xi (resp. e) associated to the Ei (resp. e) is maximal and it yields a smooth point in Spec Cox(Y/X). Upon
passing to the completion of Cox(Y/X) at mCox, that is isomorphic to a power series ring in the variable
xi, e. Moreover, these variables carry over the natural Cl(Yx)-grading defined in Cox(Y/X). We show that
the completion of the local ring of x ∈ X is isomorphic to subring S of K[[x1, . . . , xr, e]] of power series
spanned by monomials in the xi, e which have degree zero with respect to the grading indicated above. As
the monomials in the xi of degree zero restricted to E give all torus invariant sections for the rank 1 sheaves
OE(−lE|E), l ∈ Z≥0, then we can show that ring S is indeed isomorphic to the completion of local ring of
the orbifold cone Cone(E,−E|E) := Spec

(
⊕∞
l=0H

0(E,OE(−lE|E))
)
at its vertex.

Finally, we are left with proving Theorem 8.1 when X → Z is not the identity. If X → Z is birational,
cf. §8.2, we will run certain relative MMP over the base in order to prove that the base of the birational
morphism is formally toric. Then, Lemma 3.47 shows that the above MMP is formally toric, provided that
all contracted divisors are formally toric log canonical centers. This conditions on the contracted divisors
will follow almost directly from the definition of complexity. In the latter (subsection 8.3), we will consider
the cone over the fibration to reduce to the local case. A simple computation using complexities proves
that the cone over the fibration has a formally toric strucutre. Finally, we use this structure on the cone to
deduce that the starting fibration was formally toric.

3. Preliminaries

In this section, we collect some preliminary notions and results. For the basic notions and definitions on
singularities and the Minimal Model Program, we refer the reader to [26] and [24]. Let us recall the definition
of contraction.

Definition 3.1. A contraction φ : X → Z is a projective morphism of normal algebraic varieties such that
π∗OX = OZ . A fibration φ : X → Z is a contraction with positive dimensional general fiber.

When the context allows, we omit to write π and instead write X/Z to denote a quasi-projective normal
variety X endowed with a contraction to Z. The datum X/Z will also be referred to as a relative variety
over Z. If Z is just a point, then we simply write X .
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3.1. Generalized pairs. The reader can find the definitions and basic properties of b-divisors in [11, §2.3.2].

Definition 3.2. A generalized pair is a triple (X/Z,B,M), where X is a normal variety relative over Z, B
is an effective divisor on X , M is a nef b-divisor over Z, and KX +B +MX is Q-Cartier on X . We call B
(resp. M) the boundary part (nef part) of the generalized pair.

If M = 0, i.e., OX(MX) = OX for each model X , then we will drop the word generalized from the
notation. In this case, (X,B) is just a log pair. When the context is clear, we will utilize the lighter notation
(X/Z,B +M) to denote the generalized pair (X/Z,B,M), where it should be understood that M := MX .

In analogy with the classical case of log pairs, one can define log resolutions also for generalized pairs which
then leads to the definition of generalized klt (in short, gklt) and generalized log canonical (glc) singularities,
cf. [7, § 4].

Definition 3.3. We say that a generalized log canonical pair (X/Z,B +M) is generalized divisorially log
terminal, (in short, gdlt), if there exists an open set U ⊂ X satisfying the following conditions

(1) the coefficients of B are ≤ 1;
(2) U is smooth and B|U has simple normal crossing support; and,
(3) all the generalized non-klt centers of (X/Z,B +M) intersect U and are given by strata of ⌊B⌋.

We now introduce the class of semi-log canonical generalized pairs.
Given a variety X , we denote by ν : Xν → X the normalization morphism of X . A b-divisor M is the

datum of a b-divisor on the normalization Xν . If X is endowed with a morphism to a normal algebraic
variety Z, the nefness of M is defined by regarding Xν over Z via the composition with ν. Moreover, if X is
demi-normal and MXν does not contain any component of the support of the ramification locus EXν ⊂ X ,
then we can define MX := ν∗MXν , where ν∗ is the divisorial pushforward.

Definition 3.4. Let X be a demi-normal irreducible quasi-projective variety over an algebraic variety Z
and let ν : Xν → X be its normalization. Let B be an effective R-divisor on X such that B does not contain
the conductor of X in its support. Let M be a b-divisor on X which is b-nef over Z and assume that MXν

does not contain any component of the support of the ramification locus EXν ⊂ X . The pair (X/Z,B+M)
is a generalized semi-log canonical pair, if KX + B +MX is Q-Cartier and (Xν , BXν + EXν +MXν ) is a
generalized log canonical pair with boundary part BXν + EXν , and nef part MXν such that

KXν +BXν + EXν +MXν = φ∗(KX +B +MX).

3.2. Minimal Model Program. In this subsection, we will recall some classic results of the Minimal Model
Program (in short, MMP) for generalized pairs. We will also prove some preliminary results that will be
useful in the proof of the main theorem. We recall the following statement which is proved in [7, Lemma
4.4].

Theorem 3.5. Let (X/Z,B +M) be a Q-factorial gdlt pair. Then, we may run a minimal model program
with scaling of an ample divisor A over Z. Moreover, any generalized pair appearing in this run of the
minimal model program is again gdlt.

Although we can run the above minimal model program for gdlt pairs, it is not known in general whether it
terminates, see [7, Lemma 4.4] for conditions ensuring termination.

Definition 3.6. A Q-factorial gdlt modification of a generalized log canonical pair (X/Z,B + M) is a
projective birational morphism π : Y → X from a normal Q-factorial variety Y such that π only extracts
prime divisorsEi of generalized log discrepancy 0 for (X/Z,B+M) and where the generalized pair (Y/Z,BY +
MY ) obtained by log pullback is gdlt.
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The existence of gdlt modifications is proved in [14, Theorem 3.2], see also [15, Theorem 2.9].
Given a generalized pair (X/Z,B +M) and an Q-Cartier divisor A on X ample over Z, we will denote

by (X/Z,B+M +A) the generalized pair whose nef part is given by the sum of the nef part of (X,B+M)
and the b-divisor Ā which is the Cartier closure of A.

Lemma 3.7. Let (X/Z,B +M) be a generalized Q-factorial dlt pair, and let A be an ample divisor on X
over Z. Consider the gdlt pair (X/Z,B +M + A). Then, there exists an effective R-divisor D on X such
that

(1) D is big over Z,
(2) (X,D) is a klt pair, and,
(3) KX +B +M + A ∼R,Z KX +D.

In particular, if KX +B+M is pseudo-effective over Z, then (X/Z,B+M +A) admits both a good minimal
model and an ample model over Z.

Proof. We first prove the lemma when (X/Z,B +M) is a generalized klt pair. Let π : X ′ → X be a log
resolution of (X/Z,B +M + A). Thus, MX′ + ĀX′ is nef and big over Z. For every k ∈ Z>0, we can write

MX′ + ĀX′ ∼Q,Z A
′
k +

E′

k , where A′
k is ample over Z, and E′ is a fixed effective Q-divisor, see [27, Example

2.2.19]. Hence, choosing k ≫ 0 and A′
k general in its Q-linear system, setting BX′ to be the boundary part

in the log pullback of (X,B +M) to X ′, the log pair
(
X ′, BX′ +A′

k +
E′

k

)

is a klt sub-pair, and K ′
X + BX′ +A′

k +
E′

k ∼Q,Z KX′ + BX′ +MX′ + ĀX′ ∼Q,Z 0. Moreover, every prime

component of BX′ +A′
k +

E′

k with negative coefficient is exceptional over X . Setting Â := π∗A
′
k, E := π∗

E′

k

on X , then (X/Z,B + Â + E) is klt, and Â + E ∼Q,Z M + A. Setting D := A1 + E, the last statement
follows from [6, Theorem 1.1] applied to KX +D over Z.
We now assume that (X/Z,B+M) is gdlt and Q-factorial. For 0 < ǫ≪ 1, the pair (X/Z,B− ǫ⌊B⌋+M) is
generalized klt and A+ ǫ⌊B⌋ is still ample. Hence, we conclude by applying the generalized klt case to the

generalized pair (X, (B − ǫ⌊B⌋) +M + (A+ ǫ⌊B⌋)) of nef part M + (A+ ǫ⌊B⌋). �

Lemma 3.8. Let (Y/Z,BY +MY ) be a Q-factorial gdlt pair and let z ∈ Z be a closed point. Assume that
KY +BY +MY ∼Q,Z 0, and that (Y/Z,BY +MY ) has a divisorial glc center E ⊂ π−1(z). Then, there exists
a birational contraction over Z

Y //❴❴❴❴❴❴❴

π
��❅

❅❅
❅❅

❅❅
❅ Y ′

π′

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

Z

satisfying the following conditions:

(1) (Y ′, BY ′ +MY ′) is a generalized log canonical pair;
(2) the strict transform E′ of E on Y ′ is a divisorial glc center;

(3) π′−1(z) = E′; and,
(4) the generalized pair (E′, BE′ +ME′) defined by the adjunction formula along E

(KY ′ +BY ′ +MY ′)|E′ = KE′ +BE′ +ME′

is generalized semi-log canonical.
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Proof. We first prove properties (1)-(3). Let 0 < ǫ ≪ 1 be a rational number. By Theorem 3.5, we can run
a minimal model program for the gdlt pair (Y,BY − ǫE +MY ) with scaling of an ample divisor A over Z

Y =: Y0 //❴❴❴

π=:π0

))❘❘
❘❘

❘❘
❘❘❘

❘❘
❘❘❘

❘
Y1 //❴❴❴

π1

  ❆
❆❆

❆❆
❆❆

❆
Y2 //❴❴❴

π2

��

Y3 //❴❴❴

π3
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

. . .

Z

(3.1)

Since this MMP is (KY + BY +MY )-trivial over Z, then (Yi, BYi +MYi) is Q-factorial glc for all i, where
BYi and MYi are the strict transforms of BY , MY , respectively. As, by construction, the MMP in (3.1) is
also a (−E)-MMP, E cannot be contracted at any of its steps. Let Ei be the strict transform of E on Yi.

Claim. For i≫ 0, Ei = π−1
i (z).

Proof of the Claim. If the MMP in (3.1) terminates in finitely many steps, then the conclusion follows at
once. Hence, we can assume that such MMP does not terminate.
Let λi ≥ 0 be the positive real number such that Yi 99K Yi+1 is a (KYi + BYi − ǫEi +MYi + λiAYi)-trivial
birational map. If λ∞ := limi→∞ λi => 0, then the MMP in (3.1) is also a run of the MMP for the
generalized pair (Y,B − ǫE +M + λ∞A). By Lemma 3.7, there exists 0 ≤ D ∼Q,Z B − ǫE +M + λ∞A
such that (Y/Z,D) is a klt pair with big boundary over Z. Hence, the above minimal model program will
terminate by [6] and for some i large enough, −Ei is nef over Z. Thus, the fiber over z equals Ei.
Therefore, we may assume that the numbers λi converge to zero and, moreover, that from a certain index
i0 onwards each step of the MMP is a flip. Since every step of (3.1) is E-positive, if Yi 99K Yi+1 is a flip, the
flipped locus is always contained in Ei+1. Thus, the number ki of irreducible components of π−1

i (z) cannot
increase. If ki = 1 for some i, then we are done since Ei is always an irreducible component of the fiber.
Moreover, ki > ki+1 decreases if a step of the MMP contains an irreducible component of the fiber in the
flipping locus since the flipped locus will be contained in the strict transform of Ei+1.
Hence, assuming ki > 1 for some i, we now show that kj < ki for some i > j: this proves that, eventually,
ki must be 1.
Let S be a component of π−1

i (z) other than Ei. Since the fiber is connected, we may assume that S∩Ei 6= ∅.
Hence, through a general point s ∈ S there exists a curve Cs ⊂ π−1

i (x) which intersects Ei non-trivially and
it is not contained in Ei. In particular, Cs · (−Ei) < 0, thus,

Cs ⊂ B−(KYi +BYi − ǫEi +MYi/Z), and

S ⊂ B−(KYi +BYi − ǫEi +MYi/Z).

Then, for any 0 < λ≪ 1

S ⊂ B(KYi +BYi − ǫEi +MYi + λAYi/Z),

where B(D) denotes the stable base locus of a divisor D. Since limi→∞ λi = 0, it follows that for some
sufficiently large j > i, Yj is a minimal model for the pair (Yj , Bj− ǫEj+Mj +λAj) over Z. In particular, S
must have been contracted or was part of the flipping locus at some step Yk 99K Yk+1, for k ∈ {i, . . . , j− 1}.
This shows that kj < ki, as desired. �

By the above claim, after finitely many steps of above run of the MMP, we reach a model Yi where property
(3) holds. Setting Y ′ := Yi and E′ := Ei, then, (Y

′, BY ′ +MY ′) is Q-factorial and glc. By construction,

(Y ′, BY ′ − ǫE′ +MY ′) is a gdlt pair for 0 < ǫ≪ 1. Hence, the pair (E′, B̃E′) defined by the adjunction

(KY ′ +BY ′)|E′ ∼Q KE′ + B̃E′
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is a semi-log canonical pair, see, e.g., [16, Example 2.6]. We conclude that the pair obtained by generalized
adjunction

(KY ′ +BY ′ +MY )|E′ ∼Q KE′ +B′
E′ +ME′ ,

is a generalized semi-log canonical pair (E′, B′
E′ +ME′) since by the previous observation E′ is S2. �

Remark 3.9. Let (Y ′, BY ′ +MY ′) be the generalized log canonical pair constructed in Lemma 3.8. The
generalized pair (Y ′, BY ′ +MY ′ − ǫE′) is gdlt for any 0 < ǫ≪ 1, where E′ is the divisor over z ∈ Z: in fact,
(Y ′, BY ′ +MY ′ − ǫE′) is obtained by running the MMP in (3.1) for the gdlt pair (Y,BY +MY − ǫE).

Definition 3.10. Let (X/Z,B+M) be a generalized klt pair. We say that a birational contraction π : Y → X
is a small Q-factorialization, if Y is Q-factorial and π does not extract any divisor.

In analogy with the classical setup of log pairs, one can prove the existence of some special gdlt modifi-
cations. The following result is a generalization of [14, Theorem 3.2].

Lemma 3.11. Let (X/Z,B+M) be a generalized log canonical pair over Z and let z ∈ Z be a closed point.
Then there exists a Q-factorial gdlt modification π : Y → X over Z. Moreover, if (X/Z,B +M) has a glc
center contained in the fiber over z, then the glc modification can be constructed so that (Y/Z,BY +MY )
has a divisorial glc center mapping to z.

Proof. As we know that gdlt modifications exist, we only need to prove the second part of the statement. Let
π′ : X ′ → X be a log resolution of (X/Z,B+M). By takingX ′ to be a sufficiently high model, we may assume

that π′ extracts a prime divisor E of log discrepancy 0 mapping to z ∈ Z. Setting B′ := Exc(π′) + π
′−1
∗ (B),

then the generalized pair (X ′, B′ +MX′) is gdlt and

KX′ +B′ +MX′ ∼Q,X

∑

F

aF (X/Z,B +M)F,

where the sum runs over all prime divisors F on X ′ exceptional over X such that the log discrepancy
aF (X,B +M) is non-negative - this follows as in the proof of Lemma 3.8. By the negativity lemma, every
prime divisor F that is exceptional over X and such that aF (X/Z,B +M) > 0 is contained in the relative
diminished base locus of KX′ + B′ + MX′ over X . By Theorem 3.5, we may run a (K ′

X + B′ + MX′)-
MMP over X with scaling of an ample divisor. After finitely many steps of this MMP, all the divisors
with aF (X/Z,B +M) > 0 are contracted, since they are contained in the diminished base locus. Let Y be
one such model. Hence, (Y/Z,BY +MY ) is a Q-factorial gdlt modification of X . In particular, the strict
transform of E on Y is a divisor. �

3.3. Complexity. In this subsection, we recall the definitions and main properties of complexity and fine
complexity that were introduced in [10]; we also introduce the orbifold complexity.

3.3.1. Complexity in the relative setting. We extend the notion of complexity for a log pair to the relative
setting and we study some of its properties in this context.

Notation 3.12. Given a normal variety Z and a (closed) point z ∈ Z, we denote by Zz := Spec(OZ,z),
where OZ,z is the local ring of Z at z. For a morphism X → Z, we will denote by Xz → Zz the base change
of X → Z to Zz.

Definition 3.13. Let X,Z be a quasi-projective normal variety.

(1) For a given contraction φ : X → Z the class group Cl(X/Z) of X over Z is the group of Weil
Q-divisors on X modulo the subgroup generated by linear equivalence and by φ∗Pic(Z).

(2) The Q-class group ClQ(X/Z) of X over Z is ClQ(X/Z) := Cl(X/Z)⊗Q.
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(3) Let x ∈ X be a closed point. The local class group Cl(Xx) at x ∈ X is the group of Weil divisors of
X modulo divisors that are principal in a neighborhood of x.

(4) The Q-local class group at x ∈ X is ClQ(Xx) := Cl(Xx)⊗Q.

Given two Weil Q-divisors D1, D2 on X , then [D1] = [D2] ∈ ClQ(X/Z) if there exists a Cartier divisor H
on Z so that mD1 ∼ mD2 + φ∗H , for some positive integer m.

We recall the following definitions that originally appeared in [10].

Definition 3.14. Let X/Z be a normal variety over Z. Let B be an effective divisor on X .

(1) A decomposition Σ of B is a finite formal sum of the form

(3.2) 0 ≤ Σ =

k∑

i=1

biBi ≤ B,

where the Bi are effective Weil divisors (possibly reducible) and for all i, bi ∈ R>0.

(2) The norm |Σ| of a decomposition Σ of B is |Σ| :=
∑k

i=1 bi.
(3) The span of a decomposition Σ of B (relative to Z) is defined as

〈Σ/Z〉 := span〈[Bi] | i ∈ {1, . . . , k}〉 ⊆ ClQ(X/Z).

(4) Given a closed point z ∈ Z, we say that a decomposition Σ of B is supported at z if all the divisors
Bi in (3.2) intersect the fiber over z.

We recall the classic concepts of complexity, fine complexity, and local complexity.

Definition 3.15. Let X/Z be a normal variety over Z. Let z ∈ Z be a closed point. Let B be an effective
divisor on X and let Σ be a decomposition of B supported at z.

(1) The complexity of Σ at z ∈ Z is

cz(X/Z,B; Σ) := dimX + dimQ ClQ(X/Z)− |Σ|.

(2) The fine complexity of Σ at z ∈ Z is

cz(X/Z,B; Σ) := dimX + dimQ〈Σ/Z〉 − |Σ|.

(3) The fine complexity cz(X/Z,B) (resp. the complexity cz(X/Z,B)) of (X/Z,B) at z ∈ Z is the
infimum, over the set of all possible decompositions Σ of B supported at z ∈ Z of cz(X/Z,B; Σ)
(resp. of cz(X/Z,B; Σ)).

Remark 3.16. (1) The complexity (resp. fine complexity) is a local invariant of the morphism X →
Z around z ∈ Z. If we replace Z with an open neighborhood of z ∈ Z, then dimQ ClQ(X/Z)
(resp. dimQ〈Σ/Z〉) can only decrease and it achieves its minimum value on a sufficiently small
open neighborhood of z ∈ Z. Alternatively, one could also substitute ClQ(X/Z) (resp. 〈Σ/Z〉) with
ClQ(Xz) (resp. with its image inside ClQ(Xz)) in the definition of complexity (resp. fine complexity).

(2) Since for any decomposition Σ of an effective R-divisor dimQ ClQ(X/Z) ≥ dimQ〈Σ/Z〉, there is an
obvious inequality

cz(X/Z,B) ≥ cz(X/Z,B).(3.3)

Let us observe that Definition 3.15 makes sense for any pair (X,B) with B effective even when the Q-
divisor KX +B is not Q-Cartier. Thus, we can then proceed to define complexity and fine complexity also
for generalized pairs as follows.

Definition 3.17. Let (X/Z,B +M) be a generalized pair over Z. Let z ∈ Z be a closed point.
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(1) The complexity cz(X/Z,B +M) of (X/Z,B +M) at z ∈ Z is

cz(X/Z,B +M) := cz(X/Z,B).

(2) The fine complexity cz(X/Z,B +M) of (X/Z,B +M) at z ∈ Z is

cz(X/Z,B +M) := cz(X/Z,B).

3.3.2. Orbifold structures and orbifold complexity. In this subsection, we introduce the notion of orbifold
complexity. Given a quasi-projective variety X , we denote by X1 the set of codimension one points of X .
Given P ∈ X1, if D = aP + D′, with a ∈ Q∗ and P 6⊂ Supp D′, then the Cartier index of D at P is the
minimal n ∈ Z>0 such that na ∈ Z>0.

Definition 3.18. Let X be a normal variety and let B be a R-divisor on X .

(1) An orbifold structure on X is a function

n : X1 → Z>0

such that n(P ) > 1 for only finitely many P ∈ X1.
(2) An orbifold structure n is trivial if n(P ) = 1 for all P ∈ X(1); it is non-trivial, otherwise.
(3) The support of an orbifold structure n is the union of all the prime divisors Pi with nPi > 1.
(4) An orbifold structure n is compatible with B if the support of n is contained in supp(B).

Let n : X1 → Z>0 be an orbifold structure and let P1, . . . , Pk be its support. We denote by nP the value
n at P ∈ X1 and we refer to it as the orbifold index of n at P . The orbifold structure n is completely
determined by the pair ((P1, . . . , Pk), (nP1 , . . . , nPk

)), up to re-ordering the Pi and the nPi . We will write
n = ((P1, . . . , Pk), (nP1 , . . . , nPk

)).

Definition 3.19. Let X be a normal variety and let n = ((P1, . . . , Pk), (nP1 , . . . , nPk
)) be an orbifold

structure on X . A Q-divisor D is said to be an orbifold Weil divisor D for the orbifold structure n on X if
the Cartier index of D at any codimension one point P divides nP .

When the orbifold structure n is clear from the context, we will simply say that a Q-divisor D satisfying
the properties of Definition 3.19 is an orbifold Weil divisor.

Remark 3.20. Let X be a normal variety.

(1) If we only consider the trivial orbifold structure on X , then an orbifold Weil divisor on X is simply
a Weil divisor on X .

(2) Given an orbifold structure n = ((P1, . . . , Pk), (nP1 , . . . , nPk
)) and effective orbifold Weil divisor D

for n on X , then we can write in a unique way

D =
∑

P∈X1

numP (D)

nP
P, numP (D) ∈ Z.

We refer to this unique expression as the canonical expression of the effective orbifold Weil divisor
D.

Remark 3.21. Let X be a normal variety and let n := ((P1, . . . , Pk), (nP1 , . . . , nPk
)) be an orbifold structure

on X .

(1) Given a birational contraction φ : X 99K Y then there is a natural induced orbifold structure n′ on
Y , defined by n′

φ∗P
:= nP , for P 6⊂ exc(φ).

(2) Analogously, for a proper contraction f : X → Z with dimX > dimZ, there is an induced orb-
ifold structure n′′ on the general fiber F of f supported at those prime divisors of F contained in
∪ki=1 supp(F ∩ Pi). For a prime divisor Q ⊂ Pi ∩ F , then n′′

Q := nPi .
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Definition 3.22. Let X → Z be a normal variety over Z. Let B be an effective divisor on X . Let
n = ((P1, . . . , Pk), (nP1 , . . . , nPk

)) be an orbifold structure on X compatible with B.

(1) An orbifold decomposition Σ of B with respect to n is a formal finite sum of the form

0 ≤ Σ :=
∑

P∈X1

(
1−

1

nP

)
P +

s∑

j=1

bjBj ≤ B,

where for all j = 1, 2, . . . , s, Bj is an effective orbifold Weil divisors on X and bj ∈ R≥0.
(2) The norm |Σ| of the orbifold decomposition Σ of B is |Σ| :=

∑s
j=1 bi.

(3) The span of the orbifold decomposition Σ of B (relative to Z) is

〈Σ/Z〉 := 〈[Bj ] | j ∈ {1, . . . , s}〉 ⊆ ClQ(X/Z).

(4) Given a point z ∈ Z, we say that Σ is supported at z if all the effective divisors Bj intersect the fiber
over z.

Let us observe that for any given decomposition (resp. orbifold decomposition) Σ of B, we can restrict
to a neighborhood of z ∈ Z over which the given decomposition (resp. orbifold decomposition) is supported
at z ∈ Z.

In this paper, whenever we fix a relative variety X/Z and a closed point z ∈ Z, we will always assume
that any decomposition of a divisor B on X is supported at z.

Remark 3.23. Given a pair (X,B) and a non-trivial orbifold structure n = ((P1, . . . , Pk), (nP1 , . . . , nPk
)),

if B admits an orbifold decomposition with respect to n, then coeffPi(B) ≥ 1− 1
nPi

, i = 1, . . . , k.

Definition 3.24. Let (X/Z,B +M) be a generalized log pair over Z. Let z ∈ Z be a closed point.

(1) Let n be an orbifold structure on X and let Σ be an orbifold decomposition with respect to n of B
supported at z. The orbifold complexity of Σ at z ∈ Z is

ĉz(X/Z,B +M ; Σ) := dimX + dimQ〈Σ/Z〉 − |Σ|.

(2) The orbifold complexity ĉz(X/Z,B+M) of (X/Z,B+M) at z ∈ Z is the infimum of all the orbifold
complexities ĉz(X/Z,B; Σ) computed among all possible orbifold decompositions Σ of B supported
at z ∈ Z (with respect to all possible orbifold structures on X compatible with B).

When Z is just a point, then we simply drop Z and z from the notation and simply write c(X,B +M)
and, similarly, for the fine and orbifold complexities.

We have the following simple inequalities among the different types of complexity introduced so far.

Lemma 3.25. Let (X/Z,B +M) be a generalized pair over Z. Let z ∈ Z be a closed point. Then,

cz(X/Z,B +M) ≥ cz(X/Z,B +M) ≥ ĉz(X/Z,B +M).

3.3.3. Local complexities.

Definition 3.26. Let x ∈ X be a germ of a normal variety. Let B be an effective divisor on x ∈ X . Let
n = ((P1, . . . , Pk), (nP1 , . . . , nPk

)) be an orbifold structure on X compatible with B such that x ∈ Pi for all
i. Let

Σ :=
∑

P∈X1

(
1−

1

nP

)
P +

s∑

j=1

bjBj ≤ B,

be an orbifold decomposition of B for n.

(1) The span of the orbifold decomposition Σ of B is

〈Σ〉 := 〈[Bj ] | j ∈ {1, . . . , s}〉 ⊆ ClQ(Xx).
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(2) We say that Σ is supported at x if all the effective divisors Bj contain x.

In this paper, whenever we fix a germ x ∈ X , we will always assume that any orbifold structure and any
orbifold decomposition of a divisor B we consider are supported at x.

Definition 3.27. Let (x ∈ X,B +M) be the germ of a generalized log pair.

(1) Let n be an orbifold structure on X and let Σ be an orbifold decomposition with respect to n of B
supported at x. The orbifold complexity of Σ at x ∈ X is

ĉx(X,B +M ; Σ) := dimX + dimQ〈Σ〉 − |Σ|.

(2) If n is the trivial orbifold structure and Σ is a decomposition of B supported at x. The fine complexity
(resp. complexity) of Σ at x ∈ X is

cx(X,B +M ; Σ) := dimX + dimQ〈Σ〉 − |Σ|

(resp. cx(X,B +M ; Σ) := dimX + dimQ ClQ(Xx)− |Σ|).

(3) The orbifold complexity ĉx(X,B +M) of (X,B +M) at x ∈ X is the infimum of ĉx(X,B; Σ) taken
over all possible orbifold decompositions Σ of B supported at x with respect to all possible orbifold
structures on X compatible with B and supported at x.

(4) The fine complexity (resp. complexity) cx(X,B+M) (cx(X,B+M)) of (X,B+M) at x ∈ X is the
infimum of cx(X,B; Σ) (resp. of cx(X,B; Σ)) taken over all decompositions Σ of B supported at x.

It is immediate from the above definition that the analog of Lemma 3.25 holds, in the framework of germs
of generalized log pairs, for the notion of complexity defined in 3.27.

We also define a notion of complexity for general germs of normal singularities. Although this was not
defined in earlier literature in this generality, it had been already considered, cf. [21, Theorem 18.22], at least
for Q-factorial germs.

Definition 3.28. The local complexity cloc(x ∈ X) of a germ of a normal variety x ∈ X is

cloc(x ∈ X) := inf

{
dimX + rankCl(Xx)−

∑

i

ai

}
,

where the infimum is taken among all log pair structures (X,B) which are lc in a neighborhood of x and
B =

∑
i aiBi is the decomposition into prime components.

Remark 3.29. Let X be a normal variety and let B be an effective divisor on X .

(1) In general, the local class group Cl(Xx) is infinite exactly at those point x ∈ X where X is not
Q-factorial. If (X,B) is a klt pair at a point x ∈ X , then Cl(Xx) is finitely generated for every
closed point x ∈ X , see, e.g., [9, Theorem 3.27].

(2) By [21, Theorem 18.22] the local complexity of a germ of a log canonical Q-factorial singularity is
always non-negative. Moreover, if the local complexity is 0 then the singularity is formally a toric
one, cf. Definition 3.42 and Lemma 3.41.

3.3.4. Basic properties of complexity, fine complexity, and orbifold complexity.

Proposition 3.30. Let (X/Z,B +M) be a generalized pair and let z ∈ Z be a closed point. The orbifold
complexity ĉz(X/Z,B+M) is computed by some orbifold Σ of B. The same result holds if we substitute the
orbifold complexity with either fine complexity or complexity.
The same result also holds for the orbifold complexity, fine complexity, and complexity of a germ of a
generalized log pair.



14 J. MORAGA AND R. SVALDI

Proof. It is easy to see that cz(X/Z,B; Σ) is minimized by taking Σ to be the decomposition of B into

its prime components as cz(X/Z,B + M ; Σ) only depends on |Σ|. Indeed, let Σi =
∑ki

j=1 bj,iBj,i ≤ B

be a sequence of decompositions of B such that ci := cz(X/Z,B +M ; Σi) is a strictly decreasing sequence
converging cz(X/Z,B). For all i, the Weil divisors Bj,i are pairwise different and bj,i > 0, j = 1, . . . , ki. Since
Bj,i ≤ ⌈B⌉, there are only finitely many possible Weil divisors Bj,i. Hence, up to passing to a subsequence
of the Σi, we may assume that ki1 = ki2 = k and Bj,i1 = Bj,i2 for any two positive integers i1, i2, and
j = 1, . . . , k. Thus, for each i2 ≥ i1,

|Σi2 | =

ki2∑

j=1

bj,i2 >

ki1∑

j=1

bj,i1 = |Σi1 |.

Passing to a subsequence again, we may assume that for each j the limit limi→∞ bj,i = bj,∞ is well-defined.

Thus, setting Σ∞ =
∑k1

j=1 bj,∞Bj,i ≤ B it immediately follows that c∞ := cz(X/Z,B; Σ∞) ≤ ci, for each i

so that cz(X/Z,B +M ; Σ∞) = cz(X/Z,B +M).
The proof in the case of the fine complexity is the same once we observe that dimQ〈Σ/Z〉 can only assume
finitely many values.
In the case of orbifold complexity, let Σi be a sequence of orbifold decompositions B whose orbifold complex-
ities converge monotonically to ĉz(X/Z,B+M). It suffices to prove that there are only finitely many possible
orbifold structures in this sequence, as then the proof exactly proceeds as above. By Remark 3.23, the sup-
port of a orbifold structure ni supporting Σi is contained in the support of B. Moreover, if P is a prime
divisor such that 0 < coeffP (B) < 1, then ni(P ) can only assume finitely many values. If coeffP (B) = 1 and
for a given orbifold structure ni, we can define a new orbifold structure n′

i by

n′
i(Q) =

{
1 for Q = P

ni(Q) for Q 6= P.

We also define a new orbifold decomposition Σ′
i

Σ′
i :=

∑

Q∈X1

(
1−

1

n′
i(Q)

)
Q+ P +

ki∑

j=1

bi(Bi,j − coeffP (Bi,j)P ) ≤ B

where the Bi,j are the orbifold Weil divisors in the orbifold decomposition Σi. It is immediate from the
definition that

ĉz(X/Z,B +M ; Σ′
i) ≤ ĉz(X/Z,B +M ; Σi).

Hence, by repeating this process for any component of ⌊B⌋, and at each step substituting ni (resp. Σi) with
the n′

i (resp. Σ
′
i) constructed above, we can assume that ni is supported solely at prime divisors not in ⌊B⌋

at which point we are done from the above observations.
Exactly the same proof holds also in the context of germs of generalized log pairs. �

3.4. Complexity under the Minimal Model Program. In this subsection, we collect some basic results
describing the behavior of the different concepts of complexity when performing the standard operations of
the MMP.

Lemma 3.31. Let (X/Z,B+M) be a generalized log canonical pair and let z ∈ Z be a closed point. Assume
that KX + B +M ∼Q,Z 0. Then, there exists an effective Q-Cartier divisor B′ ∼Q,Z 0 such that the pair
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(X/Z,B +B′ +M) is generalized log canonical with a glc center contained in the fiber over z. Moreover,

cz(X/Z,B +B′ +M) ≤ cz(X/Z,B +M),

cz(X/Z,B +B′ +M) ≤ cz(X/Z,B +M),

ĉz(X/Z,B +B′ +M) ≤ ĉz(X/Z,B +M),

and equality hold in each of the above if and only if B′ = 0.

Proof. If (X/Z,B + M) has a glc center contained in π−1(z) we are done. Hence, we may assume that
(X/Z,B +M) has no glc center contained in π−1(z). Let (Z,BZ +MZ) be the generalized pair obtained
by applying the generalized canonical bundle formula, [14, Theorem 4.16]. Then, z is not a glc center of
(Z,BZ +MZ). Let C be a minimal glc center of (Z,BZ +MZ) among those containing z. Let A ∋ z be
an effective ample Cartier divisor not containing any glc center of (Z,BZ +MZ). Let t be the glc threshold
of A with respect to (Z,BZ +MZ). Then, (Z,BZ + tA +MZ) is glc with a glc center strictly contained in
C. Repeating this argument, we can inductively assume that there exists a Q-Cartier divisor B′

Z such that
(Z,BZ + B′

Z +MZ) is glc and z is a glc center of such pair. Let B′ := π∗(B′
Z). Thus, (X/Z,B + B′ +M)

is glc, and has a glc center in π−1(z).
Hence, 〈Σ′/Z〉 := 〈Σ/Z〉, since B′

Z is a Q-Cartier divisor on Z. Finally, given an orbifold decomposition Σ
of B and writing B′

Z = 1
kC, k ∈ Z>0 for C Cartier on Z, we define an orbifold decomposition of B +B′ by

Σ′ := Σ + 1
kπ

∗C; here π∗C is orbifold Weil as C is Cartier, whereas |Σ′| ≥ |Σ| and the equality holds if and
only if B′

Z = 0.
The proof for the absolute and fine complexities is analogous. �

Lemma 3.32. Let (X/Z,B +M) be a generalized log canonical pair and let z ∈ Z be a closed point. Let
π : Y → X be a Q-factorial extraction of divisors of generalized log discrepancy 0 for (X/Z,B +M). Let
E1, . . . , Er be the prime exceptional divisors of π.

(1) Let Σ =
∑k
i=1 biBi be a decomposition of B. Then, there exists a decomposition ΣY of BY for which

cz(Y/Z,BY +MY ; ΣY ) ≤ cz(X/Z,B +M ; Σ) and cz(Y/Z,BY +MY ; ΣY ) ≤ cz(X/Z,B +M ; Σ).

The decomposition ΣY can be taken so that each Ei appears with coefficient 1.
(2) Let n be an orbifold structure on X and let Σ be an orbifold decomposition of B for n. There exists

an orbifold structure n′ on Y and an orbifold decomposition ΣY of BY for n′ such that

ĉz(Y/Z,BY +MY ; ΣY ) ≤ ĉz(X/Z,B +M ; Σ).

The orbifold decomposition ΣY can be chosen so that each Ei appears with coefficient 1.

Proof. (1) The proof of [10, Lemma 2.4.1] applies verbatim.
(2) Let n = ((P1, . . . , Pk), (n1, . . . , nk)) be the orbifold structure on X . We define the orbifold structure

n′ := ((P ′
1, . . . , P

′
k), (n1, . . . , nk)) for P ′

i the strict transform of Pi on Y ; in particular, n′
Ei

= 1, for
i = 1, . . . , r. Writing

Σ =
∑

P∈X1

(
1−

1

nP

)
P +

s∑

i=1

biBi ≤ B,

we define

ΣY :=
∑

Q∈Y 1

(
1−

1

n′
Q

)
Q+

r∑

j=1

Ej +

s∑

i=1

biπ
−1
∗ Bi.
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ΣY provides an orbifold decomposition of BY as ΣY ≤ BY . As E1, . . . , Er, π
−1
∗ B1, . . . , π

−1
∗ Bk

generate 〈ΣY /Z〉, then

dimQ〈ΣY /Z〉 = dimQ〈Σ/Z〉+ r, and |ΣY | = |Σ|+ r.

Thus,

ĉz(Y,BY +MY ; ΣY ) = dim Y + dimQ〈ΣY /Z〉 − |ΣY |

= dimX + 〈Σ/Z〉+ r − (|Σ|+ r) = ĉz(X/Z,B +M ; Σ).

�

Lemma 3.33. Let (X/Z,B +M) be a generalized log canonical pair and let z ∈ Z be a closed point. Let
π : X → X ′ be a divisorial contraction over Z with exceptional divisor E ⊂ X. Assume that the pair
(X ′/Z,B′ +M ′) on X ′ induced via push-forward from X is a generalized log canonical pair over z ∈ Z.

(1) Let Σ =
∑k
i=1 biBi be a decomposition of B. Then, there exists a decomposition Σ′ of B′ for which

cz(X
′/Z,B′ +M ′; Σ′) ≤ cz(X/Z,B +M ; Σ) and(3.4)

cz(X
′/Z,B′ +M ′; Σ′) ≤ cz(X/Z,B +M ; Σ).(3.5)

If equality holds in (3.4) and for some i, suppBi = E, then E is a glc place of (X ′/Z,B′ +M ′)
appearing in Σ with coefficient one. Equality holds in (3.5) if and only if Σ ≥ E.

(2) Let n be an orbifold structure on X and let Σ be an orbifold decomposition of B. There exists an
orbifold structure n′ on X ′ and an orbifold decomposition Σ′ of B′ for which

ĉz(X
′/Z,B′ +M ′; Σ′) ≤ ĉz(X/Z,B +M ; Σ).(3.6)

If equality holds in (3.6) and for some i, suppBi = E, then E is a glc place of (X ′/Z,B′ +M ′)
appearing in Σ with coefficient one.

The conditions of Lemma 3.33 are fulfilled whenever π is a divisorial contraction appearing in running a
minimal model program over Z.

Proof. (1) Let Σ′ =
∑k
i=1 biπ∗Bi. Σ′ is a decomposition of B′ = π∗B. Moreover, dimQ〈Σ/Z〉 ≥

dimQ〈Σ′/Z〉 since π∗B1, . . . , π∗Bk span 〈Σ′/Z〉, and dimQ ClQ(X/Z)− 1 = dimQ ClQ(X
′/Z). If none

of the Bi is supported on E, then |Σ| = |Σ′| and

cz(X
′/Z,B′ +M ′; Σ) ≤ cz(X/Z,B +M ; Σ′)

cz(X
′/Z,B′ +M ′; Σ′) = cz(X/Z,B +M ; Σ)− 1.

Thus, we may assume that some Bi is supported on E. Up to summing such Bi, we may assume
that B1 is the only one among the Bi with such property. Up to reordering, we can assume that
{B1, . . . , Bj} is a basis of 〈Σ/Z〉. Thus, π∗B2, . . . , π∗Bj is a basis of 〈Σ′/Z〉: indeed, these divisors
generate 〈Σ/Z〉; To show linear independence over Z, let us assume that there existed a relation of the

form
∑j

i=2 δiπ∗Bi ∼Q,Z 0. Pulling-back this linear equivalence to X , then
∑j

i=2 δiBi + cB1 ∼Q,Z 0
for some c ∈ Q, which implies c = 0 = δi for all i ≥ 2. As |Σ| = |Σ′|+ b1, 0 < b1 ≤ 1 then

cz(X
′/Z,B′ +M ′; Σ′) = dimX ′ + dimQ〈Σ

′/Z〉 − |Σ′|(3.7)

= dimX + dimQ〈Σ/Z〉 − 1− |Σ|+ b1 = cz(X/Z,B +M ; Σ) + (b1 − 1),

and

cz(X
′, B′ +M ′; Σ′) = dimX ′ + dimQ ClQ(X

′/Z)− |Σ′|(3.8)

= dimX + dimQ ClQ(X/Z)− 1− |Σ|+ a = cz(X/Z,B +M ; Σ) + (a− 1).
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Thus, equality holds in both (3.7),(3.8) if and only if E is a summand of Σ with coefficient one.
Hence, E is a glc place of (X ′/Z,B′ +M ′).

(2) Let n = ((P1, . . . , Pl), (n1, . . . , nl)) be the given orbifold structure on X and let

Σ =
∑

P∈X1

(
1−

1

nP

)
P +

k∑

i=1

biBi.

We take the orbifold structure n′ defined in Remark 3.21.1 and set

Σ′ :=
∑

Q∈Y 1

(
1−

1

n′
Q

)
Q+

k∑

i=1

biπ∗Bi.

Σ′ is an orbifold decomposition of B′ with respect to n′. As π∗B1, . . . , π∗Bk span 〈Σ′/Z〉, then
dimQ〈Σ/Z〉 ≥ dimQ〈Σ′/Z〉. If for any i, supp(Bi) 6= E, then |Σ| = |Σ′|; hence,

ĉz(X/Z,B +M ; Σ) ≥ ĉz(X
′/Z,B′ +M ′; Σ′)

as claimed. Thus, we may assume that Bi = aiE for some i with ai ∈ Q>0 and ai ≤
1
nE

. Up to

summing, we may assume that for all i > 1, supp(Bi) 6= E. Let {B1, . . . , Bj} be a basis for 〈Σ/Z〉;
as in the previous part of the proof, {π∗B2, . . . , π∗Bj} is a basis of 〈Σ′/Z〉. On the other hand,
|Σ| = |Σ′|+ b1. Thus,

ĉz(X
′, B′ +M ′; Σ′) = dimX ′ + dimQ〈Σ

′/Z〉 − |Σ′|

= dimX + dimQ〈Σ/Z〉 − 1− |Σ|+ b1 = ĉz(X/Z,B +M ; Σ) + (b1 − 1) ≥ ĉz(X/Z,B +M ; Σ),

since b1 ≤ 1; equality holds if and only if E is a summand of Σ with coefficient one.
�

Lemma 3.34. Let (X/Z,B +M) be a generalized log canonical pair and let z ∈ Z be a closed point. Let
π : X 99K X ′ be an isomorphism in codimension one over Z. Assume that the pair (X ′/Z,B′ +M ′) on X ′

induced via push-forward from X is a generalized log canonical pair over z ∈ Z.

(1) Let Σ =
∑k

i=1 biBi be a decomposition of B supported at z ∈ Z. Then, there exists a decomposition
Σ′ of B′ such that

cz(X
′/Z,B′ +M ′; Σ′) = cz(X/Z,B +M ; Σ) and cz(X

′/Z,B′ +M ′; Σ′) = cz(X/Z,B +M ; Σ).

(2) Let n be an orbifold structure on X. Then, there exists an orbifold structure n′ on X ′ and an orbifold
decomposition Σ′ of B′ for which

ĉz(X
′/Z,B′ +M ′; Σ′) = ĉz(X/Z,B +M ; Σ).

The conditions of Lemma 3.34 are fulfilled whenever X 99K X ′ is a flipping contraction of a minimal
model program over Z.

Proof. For (1) it suffices to define Σ′ := π∗Σ. In (2), it suffices to define n′ as in Remark 3.21.1 and, again,
define Σ′ := π∗Σ. �

Lemmata 3.33-3.34 readily imply the following corollary.

Corollary 3.35. Let (X/Z,B+M) be a generalized log canonical pair and z ∈ Z be a closed point. Assume
that KX + B +M ∼Q,Z 0. Let π : X 99K X ′ be a birational contraction consisting of a finite sequence of
divisorial contractions and isomorphisms in codimension one over Z. Assume that the pair (X ′/Z,B′+M ′)
on X ′ induced via push-forward from X is a generalized log canonical pair over z ∈ Z.
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(1) Let Σ be a decomposition of B. There exists a decomposition Σ′ of B′ for which

cz(X
′/Z,B′ +M ′; Σ′) ≤ cz(X/Z,B +M ; Σ),(3.9)

cz(X
′/Z,B′ +M ′; Σ′) ≤ cz(X/Z,B +M ; Σ).(3.10)

Moreover, equality holds in (3.9) if and only if all prime divisors contracted by h appear in Σ with
coefficient 1.

(2) Let n be a n orbifold structure on X. Let Σ be an orbifold decomposition of B. Then, there exists
an orbifold structure on X ′ and an orbifold decomposition Σ′ of B′ for which

ĉz(X
′/Z,B′ +M ′; Σ′) ≤ ĉz(X/Z,B +M ; Σ).

3.5. Complexity and adjunction. In this subsection, we prove that the orbifold complexity can only
decrease when performing adjunction along certain divisorial generalized log canonical centers. For the
basics of adjunction along divisorial centers for generalized pairs, we refer the reader to [7, pp. 304-306].

Lemma 3.36. Let (X/Z,B +M) be a Q-factorial generalized log canonical pair and let z ∈ Z be a closed
point. Let n be an orbifold structure on X and let

Σ :=
∑

P∈X1

(
1−

1

nP

)
P +

k∑

i=1

biBi,

be an orbifold decomposition of B. Assume that the following conditions hold:

(1) (X/Z,B +M) has a divisorial glc center E contained in the fiber over z;
(2) E is a (projective) normal variety;
(3) B1 = E, b1 = 1; and,
(4) ∀j ≥ 2, Bj ∩E 6= ∅.

Then, there exists an orbifold structure m on E and an orbifold decomposition ΣE of BE such that

ĉ(E,BE +ME ; ΣE) ≤ ĉz(X/Z,B +M ; Σ),

where BE is the boundary part in the generalized pair (E,BE +ME) induced by adjunction of (X,B +M)
along E.

Condition (3), together with the assumption that (X,B +M) is generalized log canonical, implies that
for all j ≥ 2, Bj does not contain E in its support.

Remark 3.37. Let (X/Z,B +M) be a Q-factorial generalized log canonical pair. Let

Σ :=
∑

P∈X1

(
1−

1

nP

)
P +

k∑

i=1

biBi,

be an orbifold decomposition of B with respect to an orbifold structure n on X . Let E ⊂ X be a prime
divisor with B ≥ E and assume that nE 6= 1. We aim to show that it is always possible to modify the
orbifold structure n and the orbifold decomposition Σ so that nE = 1 and property (3) in the statement of
Lemma 3.36 is satisfied, while at the same time ĉz(X/Z,B +M ; Σ) does not increase.
Let n′ be the orbifold structure defined by

n′
G :=

{
1 G = E

nG E 6= G ∈ X1
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and let Σ′ be the following orbifold decomposition of B with respect to n′

Σ′ :=
∑

P∈X1

(
1−

1

n′
P

)
P + E +

k∑

i=1

bi(Bi − coeffE(Bi)E),

If the support of any of the Bi coincides with E, we can then assume, up to reordering and summing, that
B1 = b1E, b1 < 1 and for all i > 1, suppBi 6= E. Then,

B1 − coeffE(B1)E = 0, dimQ〈Σ
′/Z〉 = dimQ〈Σ/Z〉 and |Σ′| ≥ |Σ|.

On the other hand, if for all i ≥ 1, suppBi 6= E, then Bi − coeffE(Bi)E 6= 0, dimQ〈Σ′/Z〉 − dimQ〈Σ/Z〉 is
either 0 or 1, while |Σ′| = |Σ|+ 1. In both cases,

ĉz(X/Z,B +M ; Σ′) ≤ ĉz(X/Z,B +M ; Σ).

Proof of Lemma 3.36. For the reader’s convenience, we divide the proof into steps.
In view of Remark 3.37, we can assume that nE = 1. Let

Σ =
∑

P∈X1

(
1−

1

nP

)
P +

k∑

i=1

biBi,(3.11)

be the given orbifold decomposition of B.

Step 1. In this step, we show that for all Q ∈ E1 contained in the support of n, exactly one of the following
two conditions hold:

(a) there exists a unique prime divisor P0,Q in the support of n containing Q; or,
(b) there exist exactly two prime divisors P1,Q, P2,Q in the support of n containing Q and nP1,Q =

nP2,Q = 2. Moreover, in this case Q 6⊂ Bi for i > 1.

The claim follows by localizing at the generic point of Q and by adjunction along E, cf. [21, § 16], since
(X,B +M) is glc at Q and by Remark 3.23

coeffPi,Q(B) ≥ 1−
1

n(Pi,Q)
, i = 0, 1, 2.

In particular, in case (b), then Q is an lc center of the pair (X,B+M) and Q is not contained in the support
of Bi|E , as otherwise, Q would be a center of singularities strictly worse than generalized log canonical.

We define the set S ⊂ E1 to be

S := {Q ∈ E1 | Q satisfies condition (b) in the statement of Step 1}.(3.12)

Step 2. In this step, we define an orbifold structurem onE together with an orbifold decomposition ΣE ofBE .

Given Q ∈ E1, we denote by iQ be the Cartier index of E at the generic point of Q. We define the orbifold
structure m on E as follows: for Q ∈ E1,

m(Q) :=





iQ if Q is not contained in the support of n

n(P0,Q)iQ if Q satisfies condition (a) with respect to P0,Q ∈ X1 in Step 1

1 if Q ∈ S

.(3.13)
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By (3.11) and adjunction, if Q ∈ S, then coeffP1,Q(B) = coeffP2,Q(B) = 1
2 , Q belongs to the support of ⌊BE⌋

and no Bi contains Q in its support for i > 1. We define

ΣE :=
∑

Q∈E1

(
1−

1

mQ

)
Q+

k∑

i=2

biBi|E .

Step 3. In this step, we show that for i ≥ 2, the divisors Bi|E are orbifold Weil divisors for the orbifold
structure m on E.

Let Q ∈ E1. We need to check that for any i ≥ 2,

mQcoeffQ(Bi|E) ∈ Z≥0.

By Step 1, we may assume that Q 6∈ S. For P ′ ∈ X1, iQP
′ is Cartier at Q, cf. [21, §16], so that

coeffQ(P |E) =
γP,Q
iQ

, γP,Q ∈ Z>0.

Hence,

coeffQ(Bi|E) =coeffQ



∑

P∈X1

P⊃Q

coeffP (Bi)P |E


 =

∑

P∈X1

P⊃Q

coeffP (Bi)γP,Q
iQ

.(3.14)

As Σ is an orbifold decomposition, then nP coeffP (Bi) ∈ Z>0, thus,

mQ

(
coeffP (Bi)γP,Q

iQ

)
∈ Z>0.

Step 4. In this step, we show that ΣE ≤ BE , i.e., ΣE is an orbifold decomposition of BE for m.

It suffices to check that for Q ∈ E1, coeffQ(ΣE) ≤ coeffQ(BE). If Q ∈ S, then coeffQ(ΣE) = 0, while
coeffQ(BE) = 1; hence, we may assume that Q /∈ S. By (3.14) and the definition of ΣE ,

(3.15) coeffQ(ΣE) = 1−
1

mQ
+

∑

P∈X1\{E}
P⊃Q

k∑

i=2

bicoeffP (Bi)γP,Q
iQ

.

On the other hand, by [7, Remark 4.8],

(3.16) coeffQ(BE) ≥ coeffQ(B̃E) = 1−
1

iQ
+

∑

P∈X1\{E}
P⊃Q

coeffP (B)γP,Q
iQ

,

where B̃E is defined by

KE + B̃E = (KX +B)|E .

By Step 1, there exists at most one prime divisor P0,Q in the support of n containing Q; if that is the case,
then nP0,Q iQ = mQ and

coeffP0,Q(B) ≥1−
1

nP0,Q

+

k∑

i=2

bicoeffP0,Q(Bi).(3.17)
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For P ∈ X1 \ {E,P0,Q}, P ⊃ Q, then

coeffP (B) ≥
k∑

i=2

bicoeffP (Bi),(3.18)

Equations (3.16)-(3.17) imply that

coeffQ(B̃E) ≥ 1−
1

iQ
+

((
1− 1

nP0,Q

)
+
∑k

i=2 bicoeffP0,Q(Bi)
)
γP0,Q,Q

iQ
+

∑

P0 6=P∈X1

P⊃Q

k∑

i=2

bicoeffP (Bi)γP,Q
iQ

≥ 1−
1

mQ
+
∑

P∈X1

P⊃Q

k∑

i=2

bicoeffP (Bi)γP,Q
iQ

= coeffQ(ΣE),(3.19)

where we set γP0,Q = 0 if Q is not contained in the support of n. Equality holds in the chain of inequalities

in (3.19) if and only if equality holds in (3.16)-(3.18) and multQ(P0,Q) = 1. Thus, BE ≥ B̃E ≥ ΣE .

Step 5. In this step, we show that ĉ(E,BE +ME ; ΣE) ≤ ĉz(X/Z,B +M ; Σ).

Let us observe that |Σ| = 1 +
∑k
i=2 bi, |ΣE | =

∑k
i=2 bi, by (3). Moreover,

dimQ〈ΣE〉 = dimQ〈B2|E , . . . , Bk|E〉 ≤ dimQ〈B2, . . . , Bk〉 ≤ dimQ〈Σ/Z〉

As dimE = dimX − 1, we conclude that

ĉz(X/Z,B +M ; Σ) =dimX + dimQ〈Σ/Z〉 − 1−
k∑

i=2

bi

≥ dimE + dimQ〈ΣE〉 −
k∑

i=2

bi = ĉ(E,BE +ME; ΣE).

�

We finish this subsection by giving some remarks about the above proof.

Remark 3.38. Lemma 3.36 does not have a corresponding version neither for the complexity nor for the
fine complexity. Indeed, in the former case, dimQ ClQ(E) may be larger than dimQ ClQ(X/Z) whereas in the
latter, it is not necessarily true that the restriction of a decomposition Σ of B would yield a decomposition
of BE . Hence, we need to work with the orbifold complexity when dealing with adjunction along divisorial
lc center, if we wish to control it.

Remark 3.39. We adopt the the notation of the proof of Lemma 3.36.

(1) The equality ĉ(E,BE +ME ; ΣE) = ĉz(X/Z,B+M ; Σ) holds if and only if dimQ〈ΣE〉 = dimQ〈Σ/Z〉.
(2) If, moreover, we assume that dimQ〈ΣE〉 = dimQ ClQ(E) and ĉ(E,BE +ME ; ΣE) = ĉ(E,BE +ME),

then ΣE = BE and S = ∅. In fact, if that were not to be the case, taking Σ̃ to be the decomposition
of BE into its prime components, then ĉ(E,BE +ME ; Σ̃) < ĉ(E,BE +ME; ΣE), contradicting the
assumption ĉ(E,BE +ME; ΣE) = ĉ(E,BE +ME).

Remark 3.40. In the proof of Lemma 3.36, the constructed orbifold decomposition ΣE is also an orbifold
decomposition of the divisor B̃E ≤ BE on E defined by (KX + B)|E = KE + B̃E . This follows at once

from (3.19). Hence, if M |E gives contribution to BE , i.e., if BE > B̃E , cf. [7, Remark 4.8], then there
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exists an orbifold decomposition Σ′
E of (E,BE + ME) such that Σ′

E > ΣE and |Σ′
E | > |ΣE |. Thus, if

dimQ〈Σ′〉 = dimQ〈Σ〉 then ĉ(E,BE +ME ; Σ
′) < ĉ(E,BE +ME ; Σ).

3.6. Toric geometry. For the basic definitions and results about toric varieties, we refer the reader to [12].
We will need the following simple technical result about the structure of toric singularities. For the notion
of quotient-dlt (in short, qdlt) singularities, the reader is referred to [13, §5].

Lemma 3.41. Let X be a normal Q-factorial toric variety of dimension n. For any closed point x ∈ X, there
exists an affine neighborhood X0 ⊂ X containing x, and a boundary divisor Γ0 on X0, with the following
properties:

(1) the pair (X0,Γ0) is qdlt,
(2) Γ0 has exactly n components with coefficient one that pass through x ∈ X, and
(3) Γ0 contains all the torus invariant prime divisors which pass through x ∈ X.

In particular cx(X
0,Γ0) = 0 = cloc(x ∈ X)

Proof. The statement is clear if x ∈ (K∗)n ⊂ X . Hence, we can assume that x is contained in at least one of
the toric invariant divisors. Let Γ1, . . . ,Γn be the torus invariant prime divisors of X . Assume that x ∈ X
is contained in

Γ1 ∩ · · · ∩ Γj \ (Γj+1 ∪ · · · ∪ Γn) .

The variety X \ ∪n−ji=1 Γj+i is equivariantly isomorphic to (K∗)n−j × V , where V is a j-dimensional normal
affine Q-factorial toric variety. We denote by p1, . . . , pn−j (resp., pV ) the projection of (K∗)n−j ×V onto the
n−j torus factors (resp. onto V ). The prime invariant divisors Γ1, . . . ,Γj are of the form Γi = (K∗)n−j×ΓV,i,
where ΓV,1 . . . ,ΓV,j are the prime invariant divisors of V . By assumption, x is a point of (K∗)n−j×V , whose
projection on V is the invariant point of V . Setting xi := pi(x), then it suffices to consider the boundary

divisor
∑n−j
i=1 p

∗
i (xi) + p∗V (ΓV,1 + · · ·+ ΓV,j). �

3.7. Toric formality. Toric formality is simply the formal analog of the notion of toric varieties and toric
morphisms. Given an algebraic variety X and a closed point x ∈ X , we denote by X̂x the spectrum of the
completion of the local ring at the maximal ideal of x.

Definition 3.42. Let f : X → Z be a proper contraction of normal quasi-projective varieties. Let z ∈ Z be
a closed point, and let B a boundary on X . We say that the contraction f is formally toric at z for the pair
(X,B), if there exist

• a rational polyhedral cone σ ⊂ Qn, a fan of cones Ξ ⊂ Qm and their associated normal toric varieties
Z(σ), X(Ξ);

• a proper toric morphism ft : X(Ξ) → Z(σ);
• z0 ∈ Z(σ) a closed point; and
• a toric boundary Γ on X(Ξ),

satisfying the following conditions:

(1) there exist isomorphisms ψ, φ making the following diagram commutative

X(Ξ)×Z(σ) Ẑ(σ)z0 =: X̂(Ξ)z0
ψ //

f̃t
��

X̂z := X ×Z Ẑz

f̃

��

Ẑ(σ)z0
φ // Ẑz

(3.20)

where Ẑ(σ)z0 denotes the completion of the localization of Z(σ) at z0; and,
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(2) ψ maps the support of B̂z := B ×Z Ẑz onto the support of Γ̂z0 := Γ×Z(σ) Ẑ(σ)z0 .

Remark 3.43. (1) As the conditions in Definition 3.42 are local around z ∈ Z, we may always assume
that Z(σ) and Z are affine varieties. Moreover, we can always assume that z0 is a torus invariant
point of Z(σ).

(2) In Definition 3.42, we do not necessarily assume that Γ is the reduced union of all torus invariant
divisors, instead we only assume that Γ is supported on some invariant divisor.

(3) The notion of formally toric morphism is, in general, very different from the notion of toroidal
morphism, cf., for example, [1]. While the latter is a local condition about the singularities of the
reduced fiber of a morphism X → Z over a neighborhood of a closed point z ∈ Z, the former is a
much stronger notion which, in particular, determines the global (formal) structure of the fibers over
a neighborhood z.

Definition 3.44. Let x ∈ X be a germ of a normal variety.

(1) A pair (X,B) is formally toric (or, toroidal) pair at x if the identity morphism X
Id // X is

formally toric at x for (X,B).
(2) We say say that a germ x ∈ X is a formally toric (or, toroidal) singularity if there exists a boundary

B on X such that (X,B) is a formally toric pair at x.

Given a formally toric singularity x ∈ X as above, there exists by [2, Corollary 2.6] a diagram of the form

X ′ ∋ P ′

u

yyss
ss
ss
ss
ss

v

%%❑
❑❑

❑❑
❑❑

❑❑
❑

X ∋ P Z ∋ Q

(3.21)

with u, v étale, u(P ′) = P , v(P ′) = Q, and u−1(U) = U ′ = v−1(TN ).

Example 3.45. Let (X,B) be a snc log pair around a closed point x ∈ X . Then the pair (X,B) is formally
toric at x. The same conclusion holds if x is an lc center of a qdlt pair (X,B), see [13, §5].

As we will be interested in characterizing morphisms that are formally toric with respect to log canonical
pairs, we will also need a suitable notion of formal toricness for log canonical places.

Definition 3.46. Let (x ∈ X,B) be a germ of a formally toric pair with log canonical singularities. Let
E be a log canonical place of (X,B) whose center contains x. Then, E is a formally toric lc place, if the

corresponding valuation on (X̂(σ)x0 , Γ̂) is a toric valuation, i.e., a monomial valuation on the toric germ.

Lemma 3.47. Let X → Z be a formally toric morphism around z ∈ Z with respect to the log canonical pair
(X,B). Let π : X ′

99K X be a birational contraction over Z only extracting formally toric lc places of (X,B)
whose centers intersect the fibre over z. Then, the morphism X ′ → Z is formally toric around z ∈ Z with
respect to the pair (X ′, π−1

∗ B + Exc(π)).

Proof. Let X(Ξ) → Z(σ), z0 ∈ Z(σ), and Γ on X(Ξ), be the data giving X → Z a formally toric structure

around z ∈ Z for the pair (X,B) as in Definition 3.42. Since Ẑ(σ)z0 ≃ Ẑz, we may identify both completions.

Let Ξ′ be a refinement of Ξ such that the associated partial resolution X(Ξ′) → X(Ξ) extracts all the toric
lc places corresponding to formally toric lc places extracted by X ′

99K X . Without loss of generality, we
may assume that X(Ξ′) is Q-factorial. Hence, there exists a birational morphism

X̂(Ξ′)z0 := X(Ξ′)×Z(σ) Ẑ(σ)z0 99K X̂ ′
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over Ẑz, which is defined at every point of codimension one, and extracts no divisors. Let Â′ be an ample

Cartier divisor on X̂ ′ over Ẑz and let Ĥ be its pull-back to X̂(Ξ′). As X(Ξ′) is toric, then the Class group

of X̂(Ξ′) is generated by the base change of the torus invariant divisors – since the class group of the formal

punctured disk is trivial. Hence, we can assume that Ĥ is linearly equivalent to the base change of a toric
invariant divisor H on X(Ξ′). We can run a minimal model program for H over Z(σ) terminating with a
toric ample minimal model X(Ξ′′) → Z(σ). Running such minimal model program does not contract any

divisor on X(Ξ′) as H is movable on X(Ξ′), by construction. By taking the base-change X̂(Ξ′′) of X(Ξ′′)

with the completion Ẑ(σ)z0 of Z(σ), and using the isomorphism Ẑ(σ)z0 → Ẑz, we obtain a formally toric

morphism X̂ ′′ → Ẑz, such that X̂ ′′ 99K X̂ ′ is a birational map defined in codimension one and extracting no

divisors. Moreover, the pull-back of Â′ to X̂ ′′ is ample. Hence, X̂ ′′ ≃ X̂ ′ over Ẑz and said isomorphism also
identifies the support of the completion of the strict transform of Γ on X ′′ with the support of B̂.
As every prime component of π−1

∗ B + Exc(π), after base change to the completion, corresponds to a ray of

Ξ′, then their strict transforms on X̂ ′′ corresponds to the images under the isomorphism X̂ ′′ ≃ X̂(Ξ′′) of the

base change to completion of the toric invariant divisors of X̂(Ξ′′). �

4. Orbifold complexity in the absolute case

In this section we will show that Shokurov’s conjecture holds for the orbifold complexity in the absolute
case, namely, when Z is just a point, see Theorem 4.5.

4.1. Orbifold complexity of Mori dream spaces. The aim of this subsection is to prove that a projective
Mori dream space with a log Calabi-Yau structure of orbifold complexity zero is toric.

We start by proving that the local orbifold complexity is always non-negative and if it is zero, then the
germ is formally toric. This is an analog in the framework of orbifold complexity of [10, Lemma 2.4.3]. While
this result is not crucially used in the rest of the article, it strongly motivates the treatment of this section.
For the details on cyclic covers, we refer the reader to [1, § 2-3].

Theorem 4.1. Let (x ∈ X,B) be the germ of a d-dimensional log canonical pair. Let n be an orbifold
structure on X and let Σ be an orbifold decomposition of B supported on the orbifold Weil divisors B1, . . . , Bk.
Assume that KX and B1, . . . , Bk are Q-Cartier at x ∈ X. Then, the following hold:

(1) ĉx(X,B; Σ) ≥ 0;
(2) if ĉx(X,B; Σ) < 1

2 , then, up to reordering the Bi, (X, supp(B1 + · · · + Bd)) is formally toric at x
and ⌊B⌋ ⊆ supp(B1 + · · ·+Bn); and,

(3) if moreover ĉx(X,B; Σ) = 0, then all Bi are prime divisors, Σ = B, and n is supported on formally
toric divisorial lc places.

Proof. Let φ : Y → X be the finite morphism obtained by inductively taking the index one cover the Q-
Cartier Q-divisors B1, . . . , Bk and KX . Let KY + BY = π∗(KX + B) be the log pull-back. For all i, set
BY,i := φ∗Bi. Thus, for all i, BW,i is Cartier on Y and the point x has a unique pre-image w on W . For

P ∈ X1 with nP > 1 and for each Bi, we will use the canonical expression of B, coeffP (Bi) :=
numP (Bi)

nP
, cf.

Remark 3.20.2, and we will denote by QP the reduced pull-back on Y . We denote by rP the ramification
index over P , so that rP ≤ nP for each P ⊂ X1. Writing

Σ =
∑

P∈X1

(
1−

1

nP

)
P +

r∑

i=1

biBi
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then,

φ∗(KX +Σ) =

φ∗

(
KX +

∑

P∈X1

((
1−

1

nP

)
+

r∑

i=1

bicoeffP (Bi)

)
P

)
=

KY +
∑

P∈X1

((
1−

rP
nP

)
+

r∑

i=1

bi
rPnumP (Bi)

nP

)
QP ≥(4.1)

KY +
∑

P∈X1

(
r∑

i=1

binumP (Bi)

)
QP = [rP ≤ nP and

k∑

i=1

binumP (Bi) ≤ 1]

KY +

r∑

i=1

bi

( ∑

P∈X1

numP (Bi)QP

)
≥ KY +

r∑

i=1

biBY,i.

Defining ΣY :=
∑r

i=1 biBY,i, then (4.1) implies that KY + ΣY ≤ φ∗(KX + Σ) ≤ φ∗(KX + B) = KY +BY .
Thus, BY ≥

∑r
i=1 biBY,i ≥ 0 and (Y,BY ) is a log canonical pair. Moreover, KY is Cartier as well and

ΣY gives a local decomposition of BY around y. As all the BY,i are Cartier, [10, 2.4.3.(1)] implies that
ĉx(X,B; Σ) = cx(Y,BY ; ΣY ) ≥ 0. Assuming ĉx(X,B; Σ) < 1

2 , then [10, 2.4.3.(2)] implies that (Y, supp(BY,1+
· · · + BY,n)) is log smooth and ⌊BY ⌋ ⊆ supp(BY,1 + · · · + BY,d) and that x ∈ X is obtained by a sequence
of quotients of a smooth germ; in particular, x ∈ X is a Q-factorial singularity and it is formally toric by
Example 3.45. By construction (X, supp(B1 + · · · + Bd)) is log canonical and ⌊B⌋ ⊂ supp(B1 + · · · + Bd).
Hence, (X, supp(B1 + · · · + Bd)) is a log canonical Q-factorial pair of local complexity zero at x. Then,
by [21, 18.22], we conclude it is a toric pair.
We prove the last statement. If the Bi are not prime, then also the BY,i are not prime. Hence, as x ∈ X is
a Q-factorial singularity, we can refine the decomposition ΣY by taking the prime components of BY , thus
obtaining a decomposition of negative local complexity. This gives a contradiction. If Σ < B, then we can
always add prime divisors supported on supp(Σ−B) and decrease the complexity. Finally, if we have a prime
divisor P on X so that nP > 1 and P is not contained in ⌊B⌋, then the equation 4.1 is a strict inequality,
so we can find a decomposition for (Y,BY ) with negative complexity, leading to a contradiction. �

The following is the main theorem of this section.

Theorem 4.2. Let (X,B) be a log canonical pair. Assume that X a projective Q-factorial Mori dream space
and that KX + B ∼R 0. Let n be an orbifold structure on X and let Σ be an orbifold decomposition of B
with respect to n supported on the orbifold Weil divisors B1, . . . , Bk. Then, ĉ(X,B; Σ) ≥ 0. Moreover, if
ĉ(X,B; Σ) < 1, then the following conditions hold:

(1) X is a projective toric variety,
(2) ⌊B⌋ is torus invariant, and
(3) all but ⌊2c⌋ toric prime divisors appear among supp(B1), . . . , supp(Bk).

We will need the following two technical statements adapted from those in [10, §3].

Lemma 4.3. Fix a positive integer d. Assume Theorem 4.2 holds up to dimension d− 1.
Let X be a Q-factorial d-dimensional klt projective variety and let (X,B) be a log canonical pair with KX +
B ∼R 0. Let n an orbifold structure on X and let Σ be an orbifold decomposition of B supported on the
orbifold Weil divisors B1, . . . , Bk. Assume that B1, . . . , Bk span the same ray in the cone of divisors. If
|Σ| > d, then X has Picard rank one.

Proof. The proof of [10, Lemma 3.3] applies verbatim, using Remark 3.21. �
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Proposition 4.4. Fix a positive integer d. Assume Theorem 4.2 holds up to dimension d− 1.
Let X be a projective Q-factorial Mori dream space of dimension d and let (X,B) be a log canonical pair with
KX +B ∼R 0. Let n be an orbifold structure on X compatible with n and let Σ be an orbifold decomposition
of B supported on the orbifold Weil divisors B1, . . . , Bk. If ĉ(X,B; Σ) < 1, then B1, . . . , Br generate ClQ(X).

We remind the reader that a Mori dream space satisfies H1(X,OX) = 0.

Proof. The proof of [10, Theorem 3.2] applies verbatim, using Remark 3.21. �

Proof of Theorem 4.2. We prove the result by induction on the dimension d of X . The case d = 1 is trivially
true. Thus, we may assume that the result holds for any variety of dimension d− 1. By Proposition 4.4, and
inductive hypothesis, the divisors Bi generate ClQ(X), so that

ĉ(X,B; Σ) = dimX + dimQ Cl(X)Q −
k∑

i=1

bi.

Writing, cf. Remark 3.20.2,

Σ =
∑

P∈X1

((
1−

1

nP

)
+

k∑

i=1

bi
numP (Bi)

nP

)
P,

and defining

Qi :=
∑

P∈X1

numP (Bi)P,(4.2)

then for all i, Qi is a Weil divisor satisfying supp(Qi) = supp(Bi). As for all P ∈ X1,
∑k
i=1 binumP (Bi) ≤ 1,

then

1−
1

nP
+

k∑

i=1

bi
numP (Bi)

nP
≥

k∑

i=1

binumP (Bi)(4.3)

and equality holds if and only nP = 1 or Σ ≥ P . Hence,

Σ ≥
∑

P∈X1

(
k∑

i=1

binumP (Bi)

)
P =

k∑

i=1

bi

( ∑

P∈X1

numP (Bi)P

)
=

k∑

i=1

biQi.

Hence, Σ̃ :=
∑k
i=1 biQi is a decomposition of B of fine complexity complexity

c(X,B; Σ̃) = dimX + dimQ〈Σ̃〉 −
k∑

i=1

bi ≤ dimX + dimQ Cl(X)Q −
k∑

i=1

bi = ĉ (X,B; Σ) < 1.(4.4)

By [10, Theorem 1.2], c(X,B; Σ̃) ≥ 0 and equality must hold in (4.4), since dimQ ClQ(X)− dimQ〈Σ̃〉 ∈ Z≤0.
As ĉ (X,B; Σ) < 1, [10, Theorem 1.2] implies that

(1) X is a projective toric variety,
(2) ⌊B⌋ is a torus invariant divisor, and
(3) all but ⌊2c⌋ toric prime divisors appear among the Qi.

By (4.2), we conclude that property (3) above must hold also for supp(Bi). �
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4.2. Orbifold complexity of generalized projective pairs. The aim of this subsection, is to prove a
version of Theorem 3 for the orbifold complexity in the absolute case, that is, under the assumption that
Z is just a point. In particular, the following theorem generalizes [10, Theorem 1.2] in a twofold manner:
firstly, we prove the theorem in the more general framework of the orbifold complexity; moreover, we work
in the category of generalized log canonical pairs that are log Calabi–Yau.

Theorem 4.5. Let (X,B +M) be a projective generalized log canonical pair such that KX +B +M ∼Q 0.
Let n orbifold structure on X and let Σ be an orbifold decomposition of B supported on the orbifold Weil
divisors B1, . . . , Bk. Then ĉ(X,B +M ; Σ) ≥ 0. Moreover, if ĉ(X,B +M ; Σ) = c < 1, then the following
conditions hold:

(1) X is a projective toric variety,
(2) the divisor ⌊B⌋ is torus invariant, and
(3) all but ⌊2c⌋ torus invariant prime divisors appear as the support of the Weil orbifold divisors in the

orbifold decomposition Σ.

In particular, the divisors appearing in the orbifold decomposition Σ generate ClQ(X). Moreover, if c(X,B+
M) = 0, then M ∼Q 0 and M descends on X in the sense of b-divisors.

Theorem 4.5 holds in dimension 1: indeed, KX + B +M ∼Q 0 implies that X ≃ P1, or X is an elliptic
curve and B = 0 ∼Q M . In the latter case, the orbifold complexity (resp. the complexity) of the generalized
log pair is 1 (resp. 2). In the former case, properties (1)-(3) follow from Theorem 4.2. If c = 0, then
KP1 +B ∼Q 0 and M ∼Q 0, i.e., M descends on P1. We will proceed to prove Theorem 4.5 by induction on
the dimension of X .

We start by extending some of the technical results of [10, §4] on the numerical dimension of log pairs of
small complexity to the framework of orbifold complexity.

Lemma 4.6. Fix a positive real number α ∈ (0, 1) and a positive integer d. Assume that Theorem 4.5 holds
in dimension at most d− 1.
Let (X,B+M) be a Q-factorial projective generalized dlt pair of dimension d. Assume that KX+B+M ∼Q 0,
and ĉ(X,B+M) = c ≥ 0. Then, there exists a projective generalized klt pair (X,B0+M0) with the following
properties:

(1) αB < B0 < B;
(2) M0 =M +A for some ample divisor A on X;
(3) Nσ(KX +B0 +M0) has no common component with B0; and,
(4) the numerical dimension of KX +B0 +M0 is ≤ c.

For the definition of Nσ(D) for a Q-divisor D, the reader is referred to [10, § 2.1].

Proof. Let Gα(B,M) to be the set of pseudo-effective generalized klt pairs (X,B′+M ′) satisfying properties
(1)-(3) above. The set Gα(B,M) is non-empty: indeed, it contains the generalized pair (X, (α+ǫ)B+M+A),
where ǫ is an arbitrarily small positive real number, and A is sufficiently ample so that KX+(α+ǫ)B+M+A
is ample. In particular, the numerical dimension of the divisor KX + (α + ǫ)B +M + A is equal to the
dimension of X , and Nσ(KX + (α+ ǫ)B +M +A) = 0.
Let (X,B0 +M0) ∈ Gα(B,M) be a generalized pair minimizing the numerical dimension of KX +B0 +M0.
If the minimal numerical dimension is ≤ c, then we are done. Hence, by contradiction, we can assume
that the minimal value of the numerical dimension of the generalized log divisors in Gα(B,M) is > c. As
KX + B +M ∼Q 0, then this minimum is < dimX . Let (Y,BY,0 +MY,0) be a good minimal model of
KX+B0+M0 whose existence is granted by [7, Lemma 4.4], since M0 is big. Let BY be the strict transform
of B on Y and let MY be the trace of the nef part of (X,B+M) on Y . The map X 99K Y does not contract
any component of B0: indeed, it only contracts the components of Nσ(KX + B0 +M0). Let Y → W0 be
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the Iitaka fibration of KY +BY,0 +MY,0. We claim that there exists a component P of B vertical over W0.
Otherwise, let Σ be an orbifold decomposition of B, such that ĉ(X,B +M ; Σ) = c. Corollary 3.35 implies
that there exists an orbifold decomposition ΣY of (Y,BY +MY ) such that

ĉ(Y,BY +MY ; ΣY ) ≤ ĉ(X,B +M ; Σ) = c.

Restricting KY +BY +MY to the general fiber F of Y →W , and considering the induced orbifold structure
on F , cf. Remark 3.21, together with the orbifold decomposition ΣF := ΣY |F of the boundary part B|F of
KF +B|F +M |F ∼Q 0, then the argument in the proof of [10, Lemma 4.3] applies verbatim. Thus, we may
assume that there exists a component P of B vertical over W .
Let p be the coefficient of P in B. Fix λ to be the minimal non-negative real number for which the following
divisor is pseudo-effective:

KX +B1 +M1 = KX + (λB0 + (1− λ)(B − pP )) + (λM0 + (1 − λ)M)

=λ(KX +B0 +M0) + (1− λ)(KX +B +M − pP ) ∼Q λ(KX +B0 +M0)− (1− λ)pP.(4.5)

We set B1 := λB0+(1−λ)(B−pP ) andM1 := λM0+(1−λ)M . The generalized pair (X,B1+M1) satisfies
condition (2) in the definition of Gα(B +M); furthermore, supp(B0) = supp(B1). We claim that λ ∈ (0, 1).
Clearly, λ > 0. As (X,B0) is klt and M0 is big on this model, there exists a klt pair (X,B0 +∆0) with ∆0

big, such that KX +B0 +M0 ∼Q KX +B0 +∆0; thus, by [10, Lemma 2.2.1], the divisor

t(KX +B0 +M0)− (1− t)pP ∼Q t(KX +B0 +∆0)− (1− t)pP

is pseudo-effective for 0 < δ ≪ 1 and for all t ∈ [1− δ, 1]; thus, λ ∈ (0, 1).
We claim that the numerical dimension of (X,B1 +M1) is strictly less than the numerical dimension of
(X,B0 +M0). For t ∈ [0, 1], we set

Bt := (1− t)B0 + tB1 and Mt := (1− t)M0 + tM1.

By construction, KX + Bt +Mt is pseudo-effective for each t ∈ [0, 1] and, by [7, Lemma 4.4], it admits an
ample model X 99KWt. Moreover, by (4.5) KX +Bt+Mt is a convex linear combination of KX +B0 +M0

and −P . If P is in the stable base locus of KX +Bt+Mt, then Wt =W0 and P is vertical over Wt. On the
other hand, [10, Lemma 2.2.1] implies that P is vertical over Wt for each t < 1. By [19, 3.3.2], we may find
δ > 0 such that Wt is independent of t ∈ (1− δ, 1), call it W , and there is a contraction morphism W →W1.
On the other hand [10, Lemma 2.2.1] implies that P is horizontal for W1, hence, W →W1 is not birational:
the numerical dimension of KX +B1 +M1 is strictly less than the numerical dimension of KX +B0 +M0.
The generalized pair (X,B1+M1) may not satisfy conditions (1), (3) in the definition of Gα(B,M). Writing
KX +B1 +M1 ∼R Pσ +Nσ, and given s ∈ (0, 1], then

KX +Bs +Ms = (1− s)(KX +B +M) + s(KX +B1 +M1) ∼R s(Pσ +Nσ).

For 0 < s≪ 1

B2 := sB1 + (1 − s)B − s(Nσ ∧B) ≥ 0 and αB < B2 < B.

Setting M2 :=Ms = (1− s)M + sM1, then

Pσ(KX +B2 +M2) = sPσ and Nσ(KX +B2 +M2) = s(Nσ −Nσ ∧B).

Thus, the generalized klt pair (X,B2 +M2) belongs to Gα(B +M) and its numerical dimension is strictly
less than the numerical dimension of (X,B0 +M0), as the numerical dimension of (X,B2 +M2) equals the
numerical dimension of (X,B1 +M1). This gives the desired contradiction. �
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Corollary 4.7. Fix a positive real number α ∈ (0, 1) and a positive integer d. Assume that Theorem 4.5
holds in dimension d− 1.
Let (X,B+M) be a Q-factorial projective generalized dlt pair of dimension d. Assume that KX+B+M ∼Q 0,
and ĉ(X,B+M) = c < 1. Then there exists a generalized klt pair (X,B0+M0) with the following properties:

(1) αB < B0 < B,
(2) M0 =M +A for some ample divisor A on X,
(3) KX +B0 +M0 ∼R N ≥ 0 has numerical dimension zero, and
(4) N has no common components with B0.

Lemma 4.8. Fix a positive real number α ∈ (0, 1) and a positive integer d. Assume that Theorem 4.5 holds
in dimension d− 1.
Let (X,B+M) be a Q-factorial projective generalized dlt pair of dimension d. Assume that KX+B+M ∼Q 0,
and ĉ(X,B +M) = c < 1. Then there exists a Q-factorial gdlt modification (Y,BY +MY ) of (X,B +M),
and a generalized klt pair (Y,B′

Y +M ′
Y ) with the following properties:

(1) αBY < B′
Y < BY ,

(2) M ′
Y =MY +AY where AY is a big and nef divisor,

(3) KY +B′
Y +M ′

Y ∼R N
′
Y ≥ 0 has numerical dimension zero,

(4) N ′
Y has no common components with B′

Y , and
(5) no generalized non-klt center of (Y,BY +MY ) is contained in N ′

Y .

Proof. Let (X,B0 + M0) be a generalized klt pair provided by Corollary 4.7. We know that B0 has no
common components with N . Fix 0 < t ≪ 1 such that ⌊tN⌋ = 0. Let π : Y → X be a gdlt modification of
(X,B +M + tN). For 0 < t≪ 1, it is also a gdlt modification for (X,B +M). Then,

KY +BY +MY = π∗(KX +B +M) ∼Q 0 and NY = π∗(N)

with (Y,BY +MY ) gdlt, and (Y,BY +N ′
Y +MY ) gdlt as well, where N

′
Y is the sum of the components of

NY which are not contained in the support of BY . In particular, the effective divisor N ′
Y does not contain

any generalized non-klt center of the pair (Y,BY +MY ). Setting

KY +BY,0 +MY,0 = π∗(KX +B0 +M0),

where MY,0 is the trace on Y of the b-divisor corresponding to M0, BY,0 is not necessarily effective and

KY +BY,0 +MY,0 ∼R NY .

Defining

B′
Y := sBY,0 + (1− s)BY − s(NY ∧BY ) and M ′

Y := (1 − s)MY + sMY,0,

then, for 0 < s≪ 1, B′
Y is effective and KY +B′

Y +M ′
Y ∼R sN

′
Y ≥ 0. �

Lemma 4.9. Let (X,B+M) be a projective generalized log canonical pair. Assume that KX+B+M ∼Q 0.
Let n be an orbifold structure on X and let Σ be an orbifold decomposition of B. If ĉ(X,B +M ; Σ) < 1,
then X is a toric variety.

Proof. By Lemma 3.11 and [10, Lemma 2.3.2], we may assume that (X,B +M) is a Q factorial gdlt pair
with KX +B+M ∼Q 0. By Lemma 4.6, for any real number α ∈ (0, 1), there exists a projective generalized

klt pair (X,B0 +M0) with numerical dimension zero, so that αB < B0 < B and M0 =M +A, A ample on
X . Moreover, by Lemma 4.8, up to replacing X with a higher Q-factorial dlt modification of (X,B +M),
we can assume that KX +B0+M0 ∼R N ≥ 0, where N has no common component with B0 and it contains
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no generalized lc center of (X,B+M). In particular, we can choose 0 < δ ≪ 1 and α close enough to 1 such
that, setting

Σ0 :=
∑

P prime

(
1−

1

nP

)
P +

k∑

i=1

(1 − δ)biBi,

Σ0 is an orbifold decomposition of B0 and ĉ(X,B0+M0; Σ0) < 1. Hence, the generalized klt pair (X,B0+M0)
has orbifold complexity < 1 and numerical dimension 0. By [7, Lemma 4.4], as M0 is big, (X,B0 +M0)
admits a good minimal model Xm which is a Mori Dream Space. We shall use the subscript m to denote the
strict transform of a divisor or the trace of a birational-divisor on Xm. Then, the klt pair (Xm, B0,m+M0,m)
is Q-trivial with big boundary. By Corollary 3.35.2, we conclude that there exists an orbifold decomposition
Σ0,m of B0,m with

ĉ(Xm, B0,m +M0,m; Σ0,m) < 1.

Moreover, as M0,m is the pushforward of a big and nef divisor from a higher model, there exists 0 ≤
D ∼Q M0,m such that (Xm, B0,m + D) is klt and ĉ(Xm, B0,m + M0,m; Σ0,m) = ĉ(Xm, B0,m + D; Σ0,m).
By Theorem 4.2, Xm is a toric variety and all but ⌊ĉ(Xm, B0,m + M0,m; Σ0,m)⌋ toric invariant divisors
appear among the Bi,m. Moreover, as Xm is a Mori Dream Space and Mm is movable, then there exists
0 ≤ D′ ∼Q Mm such (Xm, B0,m + D) is klt and ĉ(Xm, Bm + D′) ≤ ĉ(Xm, B0,m +M0,m; Σ0,m) < 1. In
particular, ⌊Bm⌋ is a toric divisor, cf. Theorem 4.2. Note that, as we can choose D′ general enough, then by
Theorem 4.2 (3), the support of Bm contains all but one toric prime divisors.
To conclude, it suffices to prove that every exceptional divisor contracted by X 99K Xm corresponds to a
toric valuation of Xm which makes the content of the following lemma. �

Lemma 4.10. With the notation and assumptions of the proof of Lemma 4.9, the birational morphism
X 99K Xm is an equivariant birational map of toric varieties.

Proof. We claim that every lc place of (Xm, Bm) is a toric lc place. In primis, as (X,B +M) is assumed
to be dlt, then (Xm, Bm) is dlt outside the indeterminacy locus of ψ : Xm 99K X . Hence, if the center of
a lc place E of (Xm, Bm) is not contained in the intedeterminacy locus of ψ, then it is a lc place also for
(Xm, ⌊Bm⌋) and the latter is a toric pair. On the other hand, any lc place E of (Xm, Bm) whose center
is contained in the intedeterminacy locus of ψ is also a glc place of (Xm, Bm +Mm). Since X 99K Xm is
(KX + B +M)-trivial, then E is also a generalized lc place of (X,B +M) whose center on X is contained
in N . This leads to a contradiction since we assumed that N does not contain any lc center of (X,B +M).
Hence, every lc place of (Xm, Bm) is toric.
Assume that N has the minimal number of irreducible components among the generalized pairs (X,B0+M0)
satisfying conditions (1)-(5) in the statement of Lemma 4.8. If N = 0, then X is toric, since it is isomorphic
in codimension one to Xm. Hence, we may assume that N is non-trivial. Let E be a component of N which
is not a toric lc place. In particular, E is not a lc place of (Xm, Bm). We show that we can apply [10, Lemma
5.2]. Indeed, the following conditions are satisfied:

(1) By construction, Xm is a Q-factorial projective toric variety,
(2) by Theorem 4.2, the support of Bm contains all but one toric prime divisor, and
(3) by the first paragraph (Xm, Bm) is log canonical and every log canonical center is a toric valuation.

Thus, by [10, Lemma 5.2], we conclude that there exists 0 ≤ Γm ∼R Bm such that ν(Γm) > ν(Bm), (Xm,Γm)
is log canonical and every lc place of (Xm,Γm) is a toric valuation. We denote by Γ the strict transform of
Γm on X .
We claim that we can choose Γm so that (X,Γ +M) is glc. Note that

(X,B + ǫN + (1 + ǫ)M)
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is gdlt for ǫ small enough. Moreover,

π∗(KXm +Bm + (1 + δ)Mm) = KX +B + (1 + δ)Mm + Eδ,

where Eδ is an effective divisor supported on N . Furthermore, its coefficients are linear functions on δ and
E0 = 0. Thus, for δ small enough, we have Eδ ≤ ǫN . So, we conclude that (Xm, Bm + (1 + δ)Mm) is glc.
Note that for s small enough the generalized pair

(X, (1− s)B + (1− s)Eδ + sΓ + (1 − s)(1 + δ)M)

is glc. Indeed, it is a linear combination of (X,B + (1 + δ)M + Eδ) and (X,Γ), where the non-lc centers of
the later are contained in the support of N . In particular, we may choose sδ = 1− (1 + δ)−1 small enough,
so that

(X, (1− sδ)B + (1 − sδ)Eδ + sδΓ +M)

is glc. Define Γ′ := (1 − sδ)B + sδΓ. Define Γ′
m to be the pushforward of Γ′ to Xm. Note that (X,Γ′ +M)

is glc. Observe that ν(Γ′
m) > ν(Bm) and that every lc place of (Xm,Γ

′
m) is a toric valuation. Thus, we may

replace Γ with Γ′, and Γm with Γ′
m, to achieve that (X,Γ+M) is glc. Note that no glc center of (X,Γ+M)

is contained in N .
Write

KX +B = π∗(KXm +Bm) + EB , and KX + Γ = π∗(KXm + Γm) + EΓ.

For any ǫ, we can choose sδ small enough so that

−ǫN ≤ EB − EΓ ≤ ǫN.

Let Et = t(EΓ −EB)+ (1− t)N , and write Et = E+
t −E−

t . Here, we may assume both effective divisors E±
t

have disjoint support, and satisfy 0 ≤ E±
t ≤ 2ǫN , for t close enough to one. In particular, (X,Γ+E−

t +M)
is glc, whenever t is close enough to one. We define

Bt := (1 − t)B0 + tΓ + E−
t , and Mt := (1− t)M0 + tM.

Note that (X,Bt +Mt) is generalized klt for t close enough to one. Then, we have that

KX +Bt +Mt = (1− t)(KX +B0 +M0) + t(KX + Γ+M) + E−
t

∼Q (1 − t)(KX +B0 +M0) + t(Γ−B) + E−
t

∼R (1− t)N + t(EΓ − EB) + E−
t = Et + E−

t = E+
t .

Since ν(Γm) > ν(Bm), then the effective divisor E+
t has strictly less components than N . For t close enough

to one, (X,Bt +Mt) satisfies all the conditions of Lemma 4.8. We lead to a contradiction in the minimality
of the number of components of N . Thus, X must be a projective toric variety. �

Proof of Theorem 4.5. Let (X,B +M) be a projective generalized log canonical pair, such that KX +B +
M ∼Q 0. Let Σ be an orbifold decomposition of B. Assume that ĉ(X,B +M ; Σ) < 1. By Lemma 4.9, we
know that X is a projective toric variety. Replacing X with a small toric Q-factorialization, we may assume
it is Q-factorial. Since M is the pushforward of a nef divisor on a higher birational model of X , we conclude
that its diminished base locus does not contain divisors. Hence, we may run a M -MMP which terminates
with a good minimal model for M . We denote such a minimal model by Xm. Observe that X 99K Xm only
consists of toric flops. Since Mm is semiample, we may find Mm ∼Q Dm so that (Xm, Bm + Dm) is log
canonical and Q-trivial. By Lemma 3.34.2, we know that there exists an orbifold decomposition Σm of Bm
for which

ĉ(Xm, Bm +Dm; Σm) = ĉ(X,B +M ; Σ) = c.

Hence, by [10, Theorem 1.2] we conclude that c ≥ 0, ⌊Bm⌋ is torus invariant, hence ⌊B⌋ is torus invariant
as well. Moreover, all but ⌊2c⌋ toric invariant prime divisors appear in Σm, so the same statement holds for
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Σ. Finally, if c = 0, we claim that Dm = 0. Otherwise, we may add any component of Dm as a summand
of the decomposition Σm, since 〈Σ〉 = ClQ(Xm), thus obtaining an orbifold decomposition Σ′

m such that

ĉ(Xm, Bm +Dm; Σ
′
m) < 0,

leading to a contradiction. So, if c = 0, we have Dm ∼Q 0, then M ∼Q 0 as well. Let π : X ′ → X be a
birational model of X , where M descends. By the negativity lemma we can write π∗(M) =M ′ + E, where
E is effective. Since M ∼Q 0, we conclude M ′ + E ∼Q 0 and M ′ is nef. Assume that the effective divisor
E is non-trivial. Intersecting M ′ + E by an irreducible curve C which intersect E non-trivially, but is not
contained in E, we conclude that M ′ · C < 0. This leads to a contradiction. Thus, we conclude that E is
trivial, analogously we have π∗(M) =M ′. Hence, M ∼Q 0 as a b-divisor. �

5. Applications of the generalized projective case

In this subsection, we shall prove some applications of Theorem 4.5. These statements will be used in
the next sections to prove the local case of Theorem 3. First, we will prove that, under certain conditions,
a divisorial glc center of a generalized log canonical pair of orbifold complexity zero must be normal.

Lemma 5.1. Let (X,B +M) be a projective generalized log canonical pair with KX + B +M ∼R 0. Let
n be an orbifold structure on X and let Σ be an orbifold decomposition of B with ĉ(X,B +M ; Σ) = 0. Let
B1, . . . , Bk be the orbifold Weil divisors of Σ. Then, the following conditions hold:

(1) X is a normal projective toric variety;
(2) Σ = B;
(3) Bi =

Pi

nPi
for some Pi ∈ X1; and,

(4) the orbifold structure n is supported on ⌊B⌋, hence on the toric invariant divisors.

In particular, letting Σ0 be the prime decomposition of B, then c(X,B +M ; Σ0) = 0 = c(X,B +M ; Σ0).

Proof. (1)-(2) By Theorem 4.5, we know that X is a normal projective toric variety, and the components of
Σ span the Q-Class group of X . If Σ < B, then increasing the coefficient of some prime component
of B in Σ, we can find an orbifold decomposition Σ < Σ′ ≤ B, with Σ′ > Σ, |Σ′| > |Σ| and
dimQ〈Σ〉 = dimQ〈Σ′〉 = dimQClQ(X). Hence, ĉ(X,B + M ; Σ′) < 0, contradicting Theorem 4.5.
Thus, Σ = B.

(3) Writing

Σ =
∑

P∈X1

(
1−

1

nP

)
P +

k∑

i=1

biBi,

if we assume that B1 is not prime, then we can decompose B1 = B1,1 + B1,2, where B1,1 and B1,2

are non-trivial orbifold Weil divisors with distinct supports. Then, the orbifold decomposition

Σ′ :=
∑

P∈X1

(
1−

1

nP

)
P + b1B1,1 + b1B1,2 +

k∑

i=2

biBi

has negative orbifold complexity, which leads to a contradiction. Thus, B1 = 1
aP1, for some P1 ∈ X1

and for some positive integer a dividing nP1 . If a < nP1 , then the orbifold decomposition

Σ′ =
∑

P∈X1

(
1−

1

nP

)
P +

(nP1

a
b1

) P1

nP1

+
k∑

i=2

biBi

has negative orbifold complexity since
np

a b1 > b1 contradicting Theorem 4.5. Then, B1 = P1

nP1
.
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(4) Let P ∈ X1 such that nP > 1.
Let us assume first that coeffP (B) > 1 − 1

nP
. As Σ = B then coeffP (Σ) = coeffP (B) and, up to

relabeling and summing the Bi, we may assume that B1 = 1
nP
P and supp(Bj) 6= P , for all j > 1.

Hence,

coeffP (Σ) =

(
1−

1

nP

)
+

b1
nP

.

If coeffP (B) < 1, then b1 < 1 and
(
1−

1

nP

)
+

b1
nP

> b1.(5.1)

Defining the orbifold structure n′ by

n′(Q) :=

{
1 Q = P

nQ Q 6= P
,

for 0 < ǫ≪ 1 the decomposition

Σ′′ =
∑

Q∈X1

(
1−

1

n′
Q

)
Q+ (b1 + ǫ)P +

k∑

i=s+1

biBi

is an orbifold decomposition of B for the orbifold structure n′ and ĉ(X,B; Σ′′) = −ǫ < 0, which
gives the sought contradiction.
If coeffP (B) = 1 − 1

nP
, then P 6= Pi for all i, where Pi ∈ X1 is the support of the orbifold Weil

divisor Bi. Defining

Σ3 :=
k∑

i=1

biPi,

it follows from (5.1) that Σ3 is a decomposition of B. By construction and (1-3), c(X,B+M ; Σ3) =
ĉ(X,B +M ; Σ) = 0. Hence, the Pi span ClQ(X) and defining

Σ4 := Σ3 + ǫP, 0 < ǫ≪ 1,

then also Σ4 is a decomposition for B, by our initial assumption on P , and c(X,B + M ; Σ4) <
c(X,B +M ; Σ3) = 0, which leads to a contradiction. Hence, coeffP (B) = coeffP (Σ) = 1 holds for
any P ∈ X1 in the support of n. By Theorem 4.2.2, ⌊B⌋ is supported on the toric invariant part.
Finally, as n is supported on ⌊B⌋, then ĉ(X,B +M ; Σ) = c(X,B +M ; Σ) = c(X,B +M ; Σ). Since
dimQ〈Σ〉 = dimQClQ(X), then c(X,B +M ; Σ0) ≤ c(X,B +M ; Σ), thus, equality must hold. That
implies that also c(X,B +M ; Σ0) = 0, by Lemma 3.25.

�

Lemma 5.2. Let (X/Z,B +M) be a Q-factorial generalized log canonical pair and let z ∈ Z be a closed
point. Assume the following conditions hold:

(1) KX +B +M ∼Q,Z 0;
(2) ĉz(X/Z,B +M) ≤ 0;
(3) (X/Z,B +M) has a divisorial glc center E contained in the fiber over z; and,
(4) all prime components of B − E intersect E non-trivially.

Then, E is a normal variety.
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Proof. Let Σ be an orbifold decomposition of B such that ĉz(X/Z,B+M ; Σ) ≤ 0. Let (E,BE+ME) be the
generalized pair obtained by adjunction of (X,B+M) to E. (E,BE+ME) is generalized semi-log canonical.
In particular, those codimension one points of E along which E is not normal are nodal points. Furthermore,
the prime components of B intersect E along codimension one points of E contained in its normal locus.
Let us now assume for the sake of contradiction that E is not normal. Each irreducible component of the
conductor of E is a log canonical center of (X,B), thus, also a glc center of (X,B +M). Let D1, . . . , Dk be
the irreducible components of the conductor of E. By [29, Theorem 1], we can extract a unique divisorial
log canonical center of (X,B) centered at D1: we denote by X1 → X be said extraction and by F1 its
exceptional divisor. The divisor F1 is a glc place for (X,B +M), and the cited theorem guarantees that X1

is Q-factorial. Proceeding inductively, we construct a sequence of birational morphisms

Xk → Xk−1 → · · · → X1 → X

by successively extracting a glc place centered at each of the Di. Let Fi be the prime divisor of generalized
log discrepancy zero for (X,B+M) extracted at the i-th step Xi → Xi−1. Abusing notation, we will denote
by Fi its strict transform on Xj , for j > i.
Let (Xk, BXk

+MXk
) be the log pull-back of (X,B+M) to Xk and let Ek be the strict transform of E on Xk;

let (Ek, BEk
+MEk

) be the generalized log canonical pair obtained by adjunction of (Xk, BXk
+MXk

) along
Ek. As (Xk, Ek) is lc and Q-factorial, Xk is klt in a neighborhood of Ek and Ek is S2 by [26, Corollary 5.25].
On the other hand, by construction, Ek is smooth in codimension 1 as Ek is seminormal and dominates E,
and for all i the intersection Fi∩Ek must have at least two prime components, by [21, Proposition 16.4]. By
Lemma 3.32 there exists an orbifold decomposition ΣXk

of BXk
for which ĉz(Xk, BXk

+MXk
; ΣXk

) ≤ 0 and
the Fi appear in Σ with coefficient 1. By Lemma 3.36 and Remark 3.37, we can assume that Ek appears in
Σk with coefficient 1 and that there exists an orbifold decomposition ΣEk

for which

ĉ(Ek, BEk
+MEk

; ΣEk
) ≤ ĉ(Xk, BXk

+MXk
; ΣXk

) ≤ 0.(5.2)

By Theorem 4.5, ĉ(Ek, BEk
+MEk

; ΣEk
) = 0. By Step 3 in the proof of Lemma 3.36, the divisors Fi|Ek

appear as orbifold Weil divisors of the orbifold decomposition ΣEk
. On the other hand, by Lemma 5.1.3,

each orbifold Weil divisors of ΣEk
must be prime. However, since for all i Fi ∩Ek is supported at at least 2

codimension one points of Ek, that leads to the sought contradiction. �

Now, we turn to prove a first partial version of Theorem 3: namely, we show that the orbifold complexity
is always non-negative for log canonical pairs that are relatively trivial over the base. This implies that the
same holds for all complexities.

Theorem 5.3. Let (X/Z,B +M) be a generalized log canonical pair, such that KX + B +M ∼R,Z 0. Let
z ∈ Z be a closed point. Then,

(1) cz(X/Z,B +M) ≥ cz(X/Z,B +M) ≥ ĉz(X/Z,B +M) ≥ 0; and,
(2) if ĉz(X/Z,B +M) = 0, there exists a glc center of (X/Z,B +M) contained in the fiber over z ∈ Z.

Proof. To prove (1) it suffices to show that ĉz(X/Z,B +M ; Σ) ≥ 0. Hence, we shall assume, for the sake
of contradiction, that there exists an orbifold structure n on X and an orbifold decomposition Σ of B such
that ĉz(X/Z,B +M ; Σ) < 0. By Lemma 3.31, there exists B′ ≥ 0 such that (X,B + B′ +M) has a glc
center contained in π−1(z) and KX + B + B′ +M ∼R,Z 0, ĉz(X/Z,B + B′ +M ; Σ) < 0. By Lemma 3.11,
there exists a Q-factorial gdlt modification (Y,BY + MY ) of (X,B + B′ + M) over Z with a divisorial
glc center E ⊂ π−1(z). Lemma 3.32.2 implies that there exists an orbifold decomposition ΣY of BY with
ĉz(Y,BY +MY ; ΣY ) < 0, and E appears in ΣY with coefficient 1. By Lemma 3.8 and Remark 3.9, there
exists a birational contraction Y 99K Y ′ over Z which is a composition of divisorial contractions and small
maps and a generalized log canonical pair (Y ′/Z,BY ′ +MY ′) satisfying the following conditions:
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(1) (Y ′/Z,BY ′ − ǫE′ +MY ′) is Q-factorial gdlt for any 0 < ǫ ≪ 1, where BY ′ (resp. E′,MY ′) is the
strict transforms of BY (resp. E,MY ) on Y ;

(2) KY ′ +BY ′ +MY ′ ∼R,Z 0;
(3) the fiber of Y ′ over z ∈ Z is supported on E′; and,
(4) there exists a generalized semi-log canonical pair (E′, BE′ +ME′) satisfying the adjunction formula

(KY ′ +BY ′ +MY ′)|E′ = KE′ +BE′ +ME′ .

By Corollary 3.35.2, there exists an orbifold decomposition ΣY ′ for which ĉz(Y
′, BY ′ +MY ′ ; ΣY ′) < 0. By

Lemma 5.2, E′ is normal, thus, (E′, BE′ +ME′) is a glc log Calabi–Yau pair. By Lemma 3.36, there exists
an orbifold decomposition ΣE′ of BE′ with ĉ(E′, BE′ +ME′ ; ΣE′) < 0: this contradicts Theorem 4.5.
If ĉz(X/Z,B +M ; Σ) = 0, then

ĉz(X/Z,B +B′ +M) = ĉz(X/Z,B +M) = 0

and the last claim of Lemma 3.31 implies that B′ = 0, thus proving (2). �

Corollary 5.4. Let (X,B +M) be a generalized log canonical pair and x ∈ X be a closed point. Then,

cx(X,B +M) ≥ cx(X,B +M) ≥ ĉx(X,B +M) ≥ 0.

Proof. It suffices to observe that if n is an orbifold structure on X and

Σ =
∑

p∈X1

(
1−

1

nP

)
P +

r∑

i=1

biBi

is an orbifold decomposition of B for n such that ĉx(X,B+M ; Σ) < 0, then there exists an open set x ∈ U ⊂
X such that the dimension of the span of the Bi in ClQ(U) is the same as that of the span of the Bi in Cl(Xx),
by the very definition of Cl(Xx), cf. Definition 3.13. Thus, ĉx(X,B +M ; Σ) = ĉx(U/U,B|U +M |U ; Σ) < 0,
where for ĉx(U/U,B|U + M |U ; Σ) we consider the identity map of U as the structure morphism. This
contradicts Theorem 5.3. �

6. Formally toric plt blow-ups

In this section, we will introduce the concept of formally toric plt blow-ups. We will prove that a log
canonical germ of orbifold complexity zero admits a formally toric Q-factorial plt blow-up (Proposition 6.6).
We start by recalling the concept of a plt blow-ups and introducing the concept of formally toric plt blow-ups.
We start by recalling the definition of plt blow-ups (see, e.g., [34, Lemma 1]).

Definition 6.1. Let (x ∈ X,Γ) be a germ of a klt singularity.

(1) A plt blow-up for (X,Γ) at x is a projective birational morphism π : Y → X such that
• π extracts a unique divisor E and E = π−1(x);
• −E is ample over the base; and,
• (Y, π−1

∗ Γ + E) is plt.
(2) A Q-factorial plt blow-up for (X,Γ) at x is a projective birational morphism π : Y → X such that

• Y is Q-factorial;
• π extracts a unique divisor E and E = π−1(x);
• −E is nef over X ; and,
• (Y, π−1

∗ Γ + E) is plt.

The existence of Q-factorial plt blow-ups follows from the existence of plt blow-ups, [34, Lemma 1], and
small Q-factorializations for plt pairs, [6, Corollary 1.4.3]. Moreover, it is a completely local matter, that
is, the construction only depends on the germ of the singularity and we are free to shrink to a smaller
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neighborhood of x ∈ X . Let us also recall that a Q-factorial plt blow-up is also a relative Mori dream space
by [6, Corollary 1.3.2].

We now define a toroidal version of a Q-factorial plt blow-up: that will correspond to a special plt
extraction in which the exceptional divisor E is toric and the torus invariant divisors on E can be lifted to
irreducible divisors on the total space of the plt blow-up, with nice singularities.

Definition 6.2. Let (x ∈ X,Γ) be a germ of a klt singularity. Let π : Y → X be a Q-factorial plt blow-up
for (X,Γ) at x ∈ X with exceptional divisor E. The morphism π is a formally toric plt blow-up for (X,Γ)
at x if the following conditions hold:

(1) (X, ⌈Γ⌉) is a log canonical pair at x;
(2) E is an lc place of (X, ⌈Γ⌉);
(3) E is a projective toric variety and the divisor ΓE defined by the adjunction

(KY + E + π−1
∗ ⌈Γ⌉)|E = KE + ΓE

is the reduced sum of all torus invariant divisors; and,
(4) each prime component of π−1

∗ ⌈Γ⌉ restricts on E to a prime component of ΓE .

Remark 6.3. We adopt the notation of Definition 6.2.

(1) Condition (2) implies that KY + π−1
∗ ⌈Γ⌉ + E = π∗(KX + ⌈Γ⌉) and (Y,E + π−1

∗ ⌈Γ⌉) is lc. Hence,
KE + ΓE ∼ 0 and E \ supp(ΓE) is a torus acting equivariantly on E.

(2) Let Ei be a component of π−1
∗ ⌈Γ⌉ and let Ti = supp(Ei|E). By condition (3), Ti is a torus invariant

prime component of ΓE and

Ei|E =
1

mi
Ti,

where mi is the Cartier index of E at Ti.

In the next three sections, we will use the following technical result for Q-factorial plt blowups.

Lemma 6.4. Let π : Y → X be a Q-factorial plt blow-up of exceptional divisor E. Let D and D′ be two
Weil divisors on Y whose support do not contain E. If D|E ∼Q D

′|E, then [D −D′]s ∈ Cl(Xx)tor.

Proof. Since Y is Q-factorial, then D −D′ is a Q-Cartier divisor. Thus, D −D′ is a Weil Q-Cartier divisor
on Y which intersect all projective curves on E trivially. As π is a relative Mori dream space, we can run a
(D−D′)-MMP over the base. Since Y → X is birational, this minimal model program must terminate with a
good minimal model for D−D′ over X . Since this divisor is trivial on the fiber over x, we assume this MMP
is an isomorphism over a neighborhood of such point. Hence, D−D′ is semiample over a neighborhood of x.
By taking the ample model over X , we conclude that m(D−D′) ∼ 0 for some m ∈ N>0 over a neighborhood
of x: indeed, the ample model must be an isomorphism over a neighborhood of x since it must contract E,
by construction, which proves our claim. �

This simple observation immediately yields the following useful corollary.

Corollary 6.5. Let π : Y → X be a formally plt blow-up of a klt germ (x ∈ X,Γ). Then, the components of
Γ span ClQ(Xx).

Proof. LetW be a Weil divisor onX and let W̃ be its strict transform. Then since the components E1, . . . , Er
of π−1

∗ ⌈Γ⌉ restrict to the prime components of the torus invariant divisor ΓE on E, then there exists rational

numbers a1, . . . , ar such that W̃ |E ∼Q

∑r
i=1 aiEi|E . Hence, by Lemma 6.4, W̃ − (

∑r
i=1 aiEi) ∼Q,X 0.

Pushing forward to X , then W is Q linear equivalent, over a suitable neighborhood of x ∈ X to a sum of
components of Γ. �
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From now on, we turn to prove that a germ of a generalized log canonical pair of complexity zero admits
a formally toric plt blow-up.

Proposition 6.6. Let (Y/X,BY +MY ) be a generalized log canonical pair. Let x ∈ X be a closed point and
let B := π∗BY . Assume that:

• π : Y → X is birational;
• KY +BY +MY ∼Q,X 0; and,
• ĉx(Y/X,BY +MY ) = 0.

Then,

(1) the b-divisor M descends to a neighborhood of x ∈ X. In particular, M ∼Q,X 0 in the sense of
b-divisors;

(2) there exists a klt pair (X,Γ) and Γ < ⌈B⌉, ⌊B⌋ ≤ ⌈Γ⌉; and,
(3) the germ (x ∈ X,Γ) admits a formally toric plt blow-up.

Proof. For the reader’s convenience, we divide the proof into several steps.

Step 1. In this step, we make some basic reductions.

By Lemma 3.32.2, we may assume that (Y,BY +MY ) is Q-factorial gdlt. By Theorem 5.3.2, we may assume
that x is a glc center of (X,B +M). Replacing (Y,BY +MY ) with the birational model constructed in
the proof of Theorem 5.3, we may assume that (Y,BY +MY ) is Q-factorial generalized log canonical and
that the fiber over x consists of a unique divisorial glc center E which is normal, see also Lemma 5.2. By
Corollary 3.35.2, ĉx(Y,BY +MY ) can only decrease in performing such substitution, thus such substitution
does not alter the assumptions of the proposition.
Let (E,BE +ME) be the generalized log canonical pair obtained by adjunction to E. By Proposition 3.30
and Lemma 3.36, there exists an orbifold structure n (resp. m, cf. (3.13)) on Y (resp. E) together with an
orbifold decomposition ΣY ≤ BY (resp. ΣE ≤ BE) for n (resp. m) such that

0 ≥ ĉx(Y/X,BY +MY ; ΣY ) ≥ ĉ(E,BE +ME ; ΣE).(6.1)

By Theorem 4.5, ĉ(E,BE +ME ; ΣE) = 0 and equality must hold in (6.1). Hence, E is a projective normal
toric variety and ⌊BE⌋ is contained in the torus invariant boundary; ME ∼Q 0 and the nef part of (E,BE +
ME) descends onto E, in the sense of b-divisors; 〈ΣE〉 = ClQ(E) by Proposition 4.4.
By Remark 3.37, we can assume that nE = 1 and

Σ =
∑

P∈X1

(
1−

1

nP

)
P +

k∑

i=1

biBi

with B1 = E, b1 = 1, and E 6⊆ supp(Bi), for i ≥ 2. By construction, we can assume that the orbifold
structure m on E is the one defined in (3.13), and that the orbifold decomposition ΣE of BE is of the form

ΣE :=
∑

Q∈E1

(
1−

1

mQ

)
Q+

k∑

i=2

biBi|E .

Step 2. In this step, we prove that for each torus invariant prime divisor T ⊂ E, there exists i ≥ 2 such that
supp(Bi ∩ E) = T . We also prove some additional properties of Bi.

By Lemma 5.1, ΣE must actually be the prime decomposition of BE and the set S ⊂ E1 defined in (3.12)
must be empty, by Remark 3.39, since, as already observed above, 〈ΣE〉 = ClQ(E) and the orbifold complex-
ity is 0. For all i the support of Bi|E is irreducible, again by Lemma 5.1. Given T ∈ E1 a torus invariant



38 J. MORAGA AND R. SVALDI

divisor, by Theorem 4.5, there exists i ∈ {2, . . . , k} such that supp(Bi|E) = T .

Step 3. In this step, we prove that for each torus invariant prime divisor T on E, there exists ET ∈ Y 1 such
that supp(ET ∩ E) = T and ET |E = 1

iT
T , where iT is the Cartier index of E at the generic point of T .

Let T ⊂ E1 be a torus invariant divisor. By the previous step, there exists a natural number i ≥ 2 such that
supp(Bi|E) = T . Applying Lemma 5.1, then, since Bi|E is an orbifold Weil divisor,

(6.2) Bi|E =
1

mT
T.

Let us assume that m(T ) = iT ; this case only happens if the support of n does not contains T , cf. (3.13),
in which case Bi is a Weil divisor on Y . Furthermore, (6.2) holds only if Bi has a unique prime component
through T , since m(T ) = iT . Hence, it suffices to take ET = Bi.
If, instead, the support of n contains T , then there exists a unique PT ∈ Y 1 with nPT > 1 containing T ;
furthermore, m(T ) = iTnPT , see Step 2 of the proof of Lemma 3.36. Writing

Bi =
numPT (Bi)

nPT

PT +Wi, numPT (Bi) ∈ Z>0, PT 6⊂ suppWi,

we can assume that Wi is a Weil divisor around T , so that

Bi|E =

(
numPT (Bi)γPT

,T

nPT iT
+
nPT γW,T
nPT iT

)
T, γP,T , γW,T ∈ Z≥0,

which, by (6.2), implies that

numPT (Bi) = 1 = γPT ,T and γW,T = 0,

Thus, Bi =
1

nPT
PT . Hence, PT |E = 1

iT
T around T and it suffices to define ET := PT .

Step 4. In this step, we prove that the nef part of (Y,BY +MY ) descends onto Y over a neighborhood of E.
Moreover, MY |E ≡ 0.

Let us fix a sufficiently high model π′ : Y ′ → Y which is a log resolution of (Y,BY ) and on which the nef
part of (X,B + M) descends to the divisor MY ′ nef over X . We can also assume that the nef part of
(E,BE +ME) descends on E′, the transform of E on Y ′, and its trace ME′ is given by the restriction of
MY ′ |E′ . As we know that the nef part of (E,BE+ME) on E is Q-trivial as a b-divisor by Theorem 4.5, then
ME′ :=MY ′ |E′ ∼Q 0. On the other hand, MY |E ≡ 0, as well, since otherwise by Remark 3.40 we could find
an orbifold decomposition Σ′

E > ΣE of BE and ĉ(E,BE +ME; Σ
′
E) < 0 which would give a contradiction.

We shall denote by Y ′
x the fiber of Y ′ over x; Y ′

x contains E′. By the negativity lemma, as MY ′ is nef over
X , hence also over Y ,

π′∗(MY ) =MY ′ + F, F ≥ 0(6.3)

where F is π′-exceptional. That implies, in particular, that the nef part of (X,B +M) descends to MY on
Y \ π′(suppF ). Thus, if F ∩ Y ′

x = ∅, then the nef part descends over a neighborhood of E. On the other
hand, if F ∩ Y ′

x 6= ∅, as F ≥ 0 and supp(F ) does not contain the whole fiber Y ′
x, then there exists a curve

C ⊂ Y ′
x such that C ·F > 0. By the projection formula, since on Y the fiber over x is completely supported

on E and MY |E ≡ 0, then C · π′∗(MY ) = 0, so that MY ′ · C < 0, contradicting the nefness of MY ′ over X .
Thus, F ∩ Y ′

x = ∅ and M descends over a neighborhood of E.
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Step 5. Let T1, . . . , Tr be the toric invariant divisors of E and let Ei := ETi , i = 1, . . . , r be the divisors
defined in Step 3. In this step, we show that the log pair (Y,E +

∑r
i=1 Ei) is log canonical around E and

(KY + E +

r∑

i=1

Ei)|E = KE +

r∑

i=1

Ti.

By adjunction, since S = ∅ and hence mQ = iQ for all Q in the support of the orbifold structure defined in
Step 1,

(6.4) (KY + E)|E = KE +
∑

Q∈E1

(
1−

1

iQ

)
Q ≤ KE +BE .

If iQ > 1, then Q is a torus invariant divisor by Lemma 5.1. Let T1, . . . , Tr be the torus invariant divisors of
E. We will denote by Ei the divisor ETi ∈ Y 1 constructed in Step 3. Then, by Step 3

(KY + E +

r∑

i=1

Ei)|E = KE +

s∑

i=1

(
1−

1

iTi

)
Ti +

s∑

i=1

1

iTi

Ti +

r∑

i=s+1

Ti = KE +

r∑

i=1

Ti ∼ 0

is a log canonical pair.

Step 6. In this step, we prove that there exists an effective divisor DY so that (Y,DY + E) is plt around E
and (KY + E +DY )|E ≡ 0.

Let H be an ample Cartier divisor on Y . Then, HE := H |E is an ample Cartier divisor on E and there
exists positive integers ai, i = 1, . . . , r such that

HE ∼Q

r∑

i=1

aiTi,

Let us fix a positive rational 0 < ǫ ≪ 1 and 0 ≤ Dǫ ∼Q,X ǫH a general element of the relative Q-linear
system of ǫH . Then, the log pair (E,

∑r
i=1(1 − ǫai)Ti +Dǫ|E) is klt. Defining the divisor

DY :=

r∑

i=1

(1 − ǫaimi)Ei +Dǫ,

then by adjunction and the above observations

(KY + E + (1− ǫaimi)Ei +Dǫ)|E = KE +
r∑

i=1

(1 − ǫai)Ti +Dǫ|E ∼Q 0.

By inversion of adjunction, we conclude that (Y,DY + E) is plt around E.

Step 7. In this step, we prove that M descends to a neighborhood of x in X .

We run a (KY + E + DY )-MMP with scaling of an ample divisor relatively over X . We show that this
run of the MMP terminates with a good minimal model: indeed, no step of such MMP contracts curves
contained in E, as (KY + E +DY )|E ∼Q 0. Hence, each step of this MMP must preserve the pre-image of
a neighborhood of x ∈ X . On the other hand, up to shrinking, over U := X \ {x} the pair (Y,E +DY ) is
klt, hence the (KY + E +DY )-MMP must terminate over U . Hence, after finitely many steps of the above
MMP, all disjoint from E, we obtain a model Y ′′ → X on which KY ′′ +DY ′′ + E′′ is dlt big and nef over
X , DY ′′ (resp. E′′) being the strict transform of DY (resp. E) on Y ′′. By construction Dǫ|E is ample. As
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E is the fiber over x, it follows that up to shrinking X around x, we can assume that Dǫ is ample over X .
Hence, for 0 < η ≪ 1, Θ := Dǫ − ηE is ample over X and choosing 0 ≤ G ∼Q,X Θ a general element of the
Q-linear system of Θ over X , then (Y, (1− η)E +

∑r
i=1(1− ǫaimi)Ei +G) is klt and

KY + (1− η)E +

r∑

i=1

(1 − ǫaimi)Ei +G ∼Q,X KY + E +DY .(6.5)

In particular, the relative log canonical ring of KY + E +DY over X is finitely generated, see [6, Theorem
1.2], and KY ′′ +DY ′′ +E′′ is semiample over X . Furthermore, since (KY ′′ +DY ′′ +E′′)|E′′ ∼Q 0, then the
contraction Y ′′ → Y ′′′ to the ample model of KY ′′ +DY ′′ + E′′ must contract E; thus, Y ′′ is isomorphic to
X in a neighborhood of x. A fortiori, the same holds on Y , up to shrinking around x ∈ X , that is,

KY + E +DY ∼Q,X 0 ∼Q,X KY + (1− η)E +

r∑

i=1

(1− ǫaimi)Ei +G(6.6)

since, by construction, Y 99K Y ′′ is an isomorphism over a suitable neighborhood of x.
For 0 < λ≪ 1, we define the generalized log pair (Y, (1− η)E +

∑r
i=1(1− ǫaimi)Ei +G+ λMY ) which is a

generalized klt pair whose nef part is that of (Y,BY +MY ). By (6.6),

KY + (1− η)E +

r∑

i=1

(1− ǫaimi)Ei +G+ λMY ∼Q,X λMY .(6.7)

By [7, Lemma 4.4], the relative (KY +(1−η)E+
∑r
i=1(1−ǫaimi)Ei+G+λMY )-MMP overX with scaling of

an ample divisor terminates. Since, by Step 4, MY |E ∼Q 0, then the same argument as in the previous para-
graph works to show thatMY ∼Q,X 0. By Step 4 then the nef part of (X,B+M) descends to a neighborhood
of X , i.e.,M ∼Q,X 0 as a b-divisor. In particular, (6.6)-(6.7) imply that (Y, (1−η)E+

∑r
i=1(1−ǫaimi)Ei+G)

descends to a log pair (X,
∑r

i=1(1 − ǫaimi)Ẽi + G̃) which is klt around x, where Ẽi (resp. G̃) is the strict
transform of Ei (resp. G) on X . Furthermore, Y → X is a relative Mori dream space, by

Step 8. In this step, we prove that there exists a divisor ΓY on Y such that (Y,ΓY ) is klt andKY +ΓY ∼Q,X 0.
Moreover, (X,Γ) satisfies properties (2) and (3) of the statement of the proposition, where Γ is the strict
transform of ΓY on X .

As Y is a relative Mori dream space over X , we can run the relative (−E)-MMP on Y which terminates with
a good minimal model Y 99K Y ′′′. As the fiber of Y over x is completely supported on E it follows that the
map Y 99K Y ′′′ is a composition of a finite sequence of (−E)-flips. Thus, by Lemma 3.34, ĉx(Y

′′′/X,BY ′′′ +
MY ′′′) = 0, where BY ′′′ (resp. MY ′′′) is the strict transform of BY (resp. MY ) on Y

′′′. As Y ′′′ is a relative
good minimal model, then −E′′′|E′′′ is nef and big. Since the effective cone of divisors of a toric variety is
generated by the prime toric divisors, there exists positive rational numbers bi, i = 1, . . . , r such that

−E|E ∼Q

s∑

i=1

biTi,

−E′′′|E′′′ ∼Q

s∑

i=1

biT
′′′
i ,

where the second line follows from the first one since Y 99K Y ′′′ is an isomorphism in codimension one
and T ′′′

i is the strict transform of Ti on E
′′′. By inversion of adjunction, we conclude that for 0 < ǫ′ ≪ 1,

(Y ′′′, (1−ǫ′)E′′′+
∑r
i=1(1−ǫ

′bimi)E
′′′
i ) is klt around E′′′ andKY ′′′+(1−ǫ′)E′′′+

∑r
i=1(1−ǫ

′bimi)E
′′′
i |E′′′ ∼Q



A GEOMETRIC CHARACTERIZATION OF TORIC SINGULARITIES 41

0. The same argument as in Step 7 implies that

KY ′′′ + (1− ǫ′)E′′′ +

r∑

i=1

(1 − ǫ′bimi)E
′′′
i ∼Q,X 0.

Setting

Γ :=

r∑

i=1

(1− ǫ′bimi)Fi,

where Fi is the strict transform of E′′′
i on X , thus, (X,Γ) is a klt pair and moreover, by construction, it

satisfies property (2) of the statement. To construct a formally toric plt blow-up of (X,Γ), it suffices to
consider Y ′′′′ → X to be a Q-factorialization of the ample model of −E′′′ over X . To show that such
model satisfies all conditions in the definition of a formally toric plt blow-up, it suffices to notice that
ĉx(Y

′′′′/X,BY ′′′′ +MY ′′′′ ) = 0, by Corollary 3.35, and repeat the arguments from the previous steps of the
proof. �

Corollary 6.7. Let (X,B + M) be a generalized log canonical pair and x ∈ X be a closed point. If
ĉx(X,B +M) = 0, then

(1) M descends over a neighborhood of x ∈ X;
(2) there exists a klt pair (X,Γ) and Γ < ⌈B⌉, ⌊B⌋ ≤ ⌈Γ⌉; and,
(3) the germ (x ∈ X,Γ) admits a formally toric plt blow-up.

Proof. It suffices to observe that if n is an orbifold structure on X supported at x and

Σ =
∑

p∈X1

(
1−

1

nP

)
P +

r∑

i=1

biBi

is an orbifold decomposition of B for n at x such that ĉx(X,B +M ; Σ) = 0, then there exists an open set
x ∈ U ⊂ X such that the dimension of the span of the Bi in ClQ(U) is the same as that of the span of
the Bi in Cl(Xx), by the very definition of Cl(Xx), cf. Definition 3.13. Hence, ĉx(X,B +M ; Σ) = 0 =
ĉx(U/U,B|U +M |U ; Σ) where for ĉx(U/U,B|U +M |U ; Σ) we consider the identity map of U as the structure
morphism. Thus, the conclusion follows from Proposition 6.6. �

7. Toric formality

In this section, we introduce the concept of toric formality. We show that a formally toric plt blow-up, as
defined in § 6, is a special type of birational extraction that is formally isomorphic to a special blow-up of
a toric singularity. We will prove that the existence of a formally toric plt blow-up implies that the germ is
formally toric, cf. Proposition 7.5. These results will constitute the main ingredient in the proof of the local
version of Theorem 3, cf. Theorem 8.2.

7.1. The relative Cox ring. In order to prove Proposition 7.5, we will introduce and prove a few prelimi-
nary results related to Cox rings. We will study the relative Cox ring of a formally toric blow-up π : Y → X .
In particular, we will focus on describing the ideal generated by sections whose associated divisor on Y
intersects E non-trivially. We start by providing some basic definitions and introducing some notation.

Notation 7.1. Let Y → X be a projective birational morphism between normal quasi-projective varieties,
X = Spec(R), and let x ∈ X be a distinguished (closed) point. Let Yx be the base change of Y induced by
the natural morphism Xx → X and let Cl(Yx) be its class group, that is, Cl(Yx) := WDiv(Yx)/Prin(Yx)

As Xx is birational to Yx, Cl(Yx) = WDiv(Yx)/Prin(Xx). Moreover, as Xx is essentially of finite type,
Cl(Yx/Xx) ≃ Cl(Yx).
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Assumption 7.2. We adopt Notation 7.1. We assume that

(1) Cl(Yx) is finitely generated, and
(2) Cl(Yx) is torsion free.

Definition 7.3. We adopt Notation 7.1 and Assumption 7.2.
Let K ⊂ WDiv(Y ) be a finitely generated subgroup whose elements map isomorphically onto Cl(Yx). The
Cox ring of Y relatively to X around x is defined as

Cox(Y/X) :=
⊕

D∈K

H0(Y,OY (D))

The multiplication in Cox(Y/X) is defined in the function field of Y , as per usual.

The ring Cox(Y/X) is naturally graded by the free group Cl(Yx), by identifying K with its image in
Cl(Yx).

Remark 7.4. We adopt Notation 7.1 and Assumption 7.2.
The Cox ring Cox(Y/X) parametrizes all effective Weil divisors on Y locally above x. However, since
H0(X,OX)∗ = R∗, and R∗ may be strictly larger than K∗, then Cox(Y/X) may have non-trivial units. In
particular, for a Weil divisor W on Y , there exists a Cl(Y )-invariant element w ∈ Cox(Y/X) and such choice
of w is determined up to multplication by an element in R∗.

7.2. Toric formality and plt blow-ups. In this subsection, we shall prove the following proposition
relating the existence of a formally toric plt blow-up to the formal toricness of a fixed germ of klt singularity.

Proposition 7.5. Let (x ∈ X,Γ) be a germ of a klt pair. Assume that (x ∈ X,Γ) admits a formally toric
plt blow-up π : Y → X at x ∈ X and let E be the exceptional divisor on π. Then, π is formally toric over x
with respect to the pair (Y, π−1

∗ ⌈Γ⌉+ E) and (x ∈ X, ⌈Γ⌉) is a formally toric singularity.

7.2.1. Torsion free case. We first proceed to prove Proposition 7.5 under the assumption that Cl(Xx) is free.
The main tool is the relative Cox ring introduced in the previous subsection.

We will be working in the framework of the following construction arising from a formally toric plt blow-up
of a germ of a klt singularity, cf. Definition 6.2.

Construction 7.6. We adopt Notation 7.1.
Let (x ∈ X,Γ) be the germ of a klt singularity. We assume that X = Spec(R). We denote by mx ⊂ R the
maximal ideal associated to the closed point x. Let π : Y → X be a formally toric plt blow-up for (X,Γ)
with exceptional divisor E.
By [9, Theorem 3.27], Cl(Yx) is finitely generated; thus, we can adopt Assumption 7.2.1. As already men-
tioned above, we will also adopt 7.2.2. Thus we can defined Cox(Y/X) as in Definition 7.3.
We proceed to the following construction:

(1) We fix a homogeneous element e ∈ Cox(Y/X) such that div(e) = E. By Remark 7.4, e is defined up
to multiplication by a unit of R.

(2) We denote by T1, . . . , Tr ⊂ E the torus invariant divisors of E supported at the intersection between
components Ei of π

−1
∗ ⌈Γ⌉ and E. We fix homogeneous elements x1, . . . , xr ∈ Cox(Y/X) such that

div(xi) = Ei. By Remark 7.4, all these elements are uniquely defined up to multiplication by a unit
of R. Moreover,

Ei|E =
Ti
mi

,

where mi is the Cartier index of E at the generic point of Ti, cf. Remark 6.3. We also set Fi := π∗Ei.
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(3) We denote by mCox the ideal of Cox(Y/X) generated by mx and by sections of H0(Y,OY (D)) whose
divisor of zeroes on Y intersects E non-trivially, for D ∈ K the finitely generated subgroup of
WDiv(X) defined in Definition 7.3.

(4) If we pass to an affine open subset X ′ ⊂ X containing x, denoting Y ′ := π−1(X ′) ⊆ Y , then we can
define, using the same procedure of Definition 7.3. Cox(Y ′/X ′) is a Cl(Yx)-graded ring. To define
Cox(Y ′/X ′), it suffices to restrict to Y ′ the divisor in the finitely generated group K.

(5) In Cox(Y ′/X ′), we define the ideal mCox,X′ , as the ideal generated by mx,X′ and by sections of
H0(Y ′,OY ′(D)), D ∈ K whose divisor of zeroes on Y ′ intersect E non-trivially. In particular,
mCox,X′ ⊂ Cox(Y ′/X ′) is the ideal generated by the image of mCox,X under the natural restriction
map (of sections/cycle) from Y to Y ′.

The following lemma relates the freeness of Cl(Xx) and Cl(Yx) in the context of Construction 7.6.

Lemma 7.7. With the notation and assumptions of Construction 7.6, if Cl(Xx) is free, then Cl(Yx) is also
free.

Proof. Let W be a Weil divisor on Y such that mW ∼ 0 for some m ∈ N>0. Setting WX := π∗W , WX is a
Weil divisor on X and mWX ∼ 0. Since Cl(Xx) has no torsion, then WX ∼ 0 on a neighborhood X ′ of x.
Then, π∗(WX) = W + αE ∼ 0 over the counter-image Y ′ of X ′ on Y . Since W ∼Q 0, then also aE ∼Q 0.
However, since E|E 6∼Q 0 as −E|E is big, then a = 0 and W ∼ 0 on Y ′. �

In view of Lemma 7.7, we can substitute Assumption 7.2.2 with the assumption that Cl(Xx) is free. We
will do so for the remainder of this subsection.

We now proceed to prove a few technical results that will be used in the proof of Proposition 7.15.

Lemma 7.8. With the notation and assumptions of Construction 7.6, the ideal mCox ⊂ Cox(Y/X) is a
maximal ideal.

Proof. Let D 6= 0 be a Weil divisor of K. Then 0 6= [D] ∈ Cl(Yx), since, by assumption, K maps isomorphi-
cally onto Cl(Yx). For any section 0 6= σ ∈ H0(Y,OY (D)), div(σ)∩E 6= ∅: indeed, if that were not the case,
then considering the open set X \ π(supp(div(σ))), it immediately follows that [D] = 0 ∈ Cl(Yx), leading to
a contradiction. Hence,

⊕

06=D∈K

H0(Y,OY (D)) ⊂ mCox and Cox(Y/X)/mCox ≃ H0(X,OX)/mx ≃ K.

�

Lemma 7.9. With the notation and assumptions of Construction 7.6, let D and D′ be two Weil divisors
on Y whose support do not contain E. If D|E ∼Q D

′|E, then [D] = [D′] ∈ Cl(Yx).

Proof. By Lemma 6.4, D −D′ ∼Q 0 over a sufficiently small neighborhood of x ∈ X . The conclusion then
follows from Lemma 7.7. �

Lemma 7.10. With the notation and assumptions of Construction 7.6, the group Cl(E) is torsion free.

Proof. Let WE be a torsion Weil divisor on E. Then WE ∼
∑r

i=1 aiTi, ai ∈ Z. Setting WY :=
∑r
i=1 aimiEi,

then WY |E =WE . By Lemma 7.9, then [WY ] = 0 ∈ Cl(Yx). Thus, WE ∼ 0 on E. �

Lemma 7.11. With the notation and assumptions of Construction 7.6, let RE be the ray generated by −E
in Cl(Yx)⊗Q. Then RE ∩ Cl(Yx) is generated by −E.
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Proof. Let W be a Weil divisor on Y such that mW ∼ −E. Write W =W ′ + αE and E 6⊂ suppW ′. Then,
W ′′ := mW ′ + (mα+ 1)E ∼ 0 and π∗W

′′ ∼ 0. Setting W ′
X := π∗W

′, then mW ′
X ∼ 0; thus, W ′

X ∼ 0 by the
freeness of Cl(Xx). Writing π∗(W ′

X) =W ′ + βE, β ∈ Z, then, mW ′ ∼ −mβE and

(m(α− β) + 1)E ∼ 0.

Since the intersection of a general curve on E with E is negative, we conclude that m = 1 as claimed. �

Lemma 7.12. With the notation and assumptions of Construction 7.6, the following equalities holds:

rank(Cl(Yx)) = rank(Cl(Xx)) + 1 = rank(Cl(E)).(7.1)

In particular, we can choose K = ZE⊕K ′ ⊂ WDiv(X) in the construction of Cox(Y/X) in such a way that
the support of any non-zero element of K ′ is contained in E1 ∪ · · · ∪ Er.

Proof. The first equality in (7.1) is simply a consequence of [20, Proposition 6.5].
To prove the second equality, let W1, . . . ,Wk be Weil divisors supported on the torus invariant divisors
of E and such that the classes [W1], . . . , [Wk], [−E|E ] give a basis of ClQ(E). For all i, we can write
Wi =

∑r
j=1 αi,jTj, i = 1, . . . , k, αi,j ∈ Q. Setting WY,i :=

∑r
j=1 αi,jmjEj , i = 1, . . . , k, then WY,i|E = Wi,

cf. Remark 6.3 and we claim that [WY,1], . . . , [WY,k], [−E] is a basis of ClQ(Yx). First, we prove that the
WY,i generate ClQ(Yx). Indeed, let D be a Weil divisor on Y whose support does not contain E. There exist

α1, . . . , αk ∈ Q such that
∑k
i=1 αiWi ∼Q D|E . Lemma 7.9 implies that

∑k
i=1 αi[WY,i] = [D] in ClQ(Yx). On

the other hand, the classes {[WY,1], . . . , [WY,k], [E]} are linearly independent in ClQ(Yx) since they restrict
to linearly independent classes in ClQ(E).
To show the second part of the statement, it suffices to notice that the classes [Ei|E ] span the image of the
restriction map

Cl(Yx) → ClQ(E), [D] 7→ [D|E ].

�

Lemma 7.13. With the notation and assumptions of Construction 7.6, the dimension of the Cox ring
Cox(Y/X) is at most dimY + ρ(E).

By Construction 7.6, dimY + ρ(E) = r + 1.

Proof. The variety X is a GIT quotient of the spectrum of Cox(Y/X) by the Picard torus Spec(K[Cl(Yx)]),
see [3, Remark 1.2.3.2]. Hence, dimCox(Y/X) ≤ dimXx + rankCl(E). By Lemma 7.12, the Picard torus
has dimension rankCl(E) = ρ(E). Hence, dimCox(Y/X) ≤ dimY + ρ(E) ≤ dimE + ρ(E) + 1 = r + 1. �

Now, we turn to prove that the spectrum of the Cl(Yx)-graded ring Cox(Y/X) is regular at the maximal
ideal mCox. As we are working under the assumption that Cl(Xx) has no torsion, we shall use Lemma 7.9
to measure linear equivalence on Y by restricting to E.

Lemma 7.14. With the notation and assumptions of Construction 7.6, the spectrum of the ring Cox(Y/X)
is regular at the maximal ideal mCox.

Proof. By Lemma 7.13, dimCox(Y/X) ≤ r + 1. Hence, it suffices to prove that mCox is generated by r + 1
elements. We shall show that the elements x1, . . . , xr, e ∈ Cox(Y/X) provide a set of generators of mCox.
Let 0 6= w ∈ mCox be a homogeneous element w ∈ H0(Y,OY (D)), for some D ∈ K. Let W := div(w) on Y .
We may assume that W doesn’t contain E in its support, as otherwise w ∈ 〈e〉. In particular, since

H0(Y,OY (−E)) · e = mx ⊂ H0(Y,OY ) = H0(X,OX),

we can assume that the degree of w ∈ Cox(Y/X) is not zero.
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Claim. If there exists w′ ∈ 〈x1, . . . , xr〉 such that W ′ := div(w′) satisfies W ′|E = W |E , then w ∈
〈x1, . . . , xr, e〉.

Proof of Claim. By Lemma 7.9, [W ′] = [W ] ∈ Cl(Yx). Hence, w and w′ are homogeneous element of the
same degree in Cox(Y/X). Letm be divisible enough so thatmW and mW ′ are Cartier divisors on Y . Then,
mW ′|E = mW |E and (w′)m|E = λwm|E , for some λ ∈ K∗, as E is projective. Hence, by the restriction
exact sequence, we conclude that wm−λ(w′)m ∈ 〈e〉. By [3, Proposition 1.3.3.4], the ideal 〈e〉 is prime since
e is irreducible in Cox(Y/X) by Lemma 7.11. Hence, w−µmw

′ ∈ 〈e〉 for an appropriate m-th root µm of λ.
As we assumed that w′ ∈ 〈x1, . . . , xr〉, then w ∈ 〈x1, . . . , xr, e〉 as claimed. �

We are now going to construct an element w′ ∈ Cox(Y/X) satisfying the conditions of the Claim. To this
end, we may assume that W is a reduced effective Weil divisor. Let Ti ∈ E1 be a torus invariant divisor.
Let us recall that coeffTiW |E = q

mi
, q ∈ N and q = coeffP (W |E). On the other hand, if P is a prime

component of W |E which is not torus invariant, then W is a Cartier divisor at the generic point of P and
coeffP (W |E)P is an integral multiple of P . As Cox(E) is a free polynomial ring generated by the sections
tj , corresponding to the torus invariants divisors Tj , j = 1, . . . , r, [3, Theorem 2.1.3.2], then P is just the
vanishing locus of p(t1, . . . , tr) for some polynomial p ∈ K[t1, . . . , tr] which is homogeneous with respect
to the natural Cl(E)-grading on K[t1, . . . , tr]. All monomials of p(t1, . . . , tr) correspond to effective Weil
divisors supported on the toric invariant divisors and they belong to the same linear equivalence class as P .
Considering the polynomial p(xm1

1 , . . . , xmr
r ) ∈ Cl(Yx), by Lemma 7.9, all monomials of p(xm1

1 , . . . , xmr
m ) in

the xi correspond to effective Weil divisors in the same linear equivalence class on Y which are supported
on E1 ∪ · · · ∪Er. Thus, p(x

m1
1 , . . . , xmr

r ) ∈ 〈x1, . . . , xr〉 is Cl(Yx)-invariant. We conclude that the associated
Weil divisor W ′ on Y satisfies W ′|E = P . This concludes the construction of w′. �

Alternative proof of Lemma 7.14. We consider the elements x1, . . . , xr, e ∈ Cox(Y/X), cf. Construction 7.6.
We define SCox(Y/X) := SpecCox(Y/X); for an element s ∈ Cox(Y/X), div(s) will denote the corresponding
principal divisor on SCox(Y/X). Let KSCox(Y/X)

+ div(x1) + · · · + div(xr) + div(e) be the log pull-back of

KY + E + E1 + · · · + Er to SCox(Y/X), via the natural rational map SCox(Y/X) 99K Y , cf. [3, Construction
1.6.3.1]. The divisor KSCox(Y/X)

is Cartier by the freeness of the Class group and it is actually the pull-back

of KX , cf. [4, Theorem 1.1].
We claim that (SCox(Y/X), div(x1) + · · ·+div(xr) + div(e)) is a log canonical pair. This argument is similar
to the one in [22]. Let W → SCox(Y/X) be a torus equivariant log resolution of the above log pair. Assume
that W admits a good torus quotient W →WY so that WY → Y is birational. By the proof of [28, Theorem
4.7], there exists a Q-trivial log sub-pair (WY , BWY ) so that the total discrepancy of (Cox(Y/X), div(x1) +
· · · + div(xr) + div(e)) is larger than or equal to the total discrepancy of (WY , BWY ). Furthermore, by
equation (7) in the proof of [28, Theorem 4.7], we know that BWY has coefficient one at the strict transform
of each E1, . . . , Er and E. By the negativity lemma, we conclude that KWY + BWY is the log pull-back of
KY +E1+ · · ·+Er+E toWY . In particular, (WY , BWY ) is a log canonical sub-pair. Therefore, the log pull-
back of (SCox(Y/X), div(x1)+ · · ·+div(xr)+div(e)) toW is a log canonical sub-pair. In particular, the above
pair is log canonical. Now, each principal divisor div(xi) and div(e) passes through the closed point defined
by mCox. We have exactly r + 1 Cartier divisors passing through that closed point. Recall by Lemma 7.13,
that SCox(Y/X) has dimension r+1. By [10, Lemma 2.4.3], (SCox(Y/X), div(x1)+ · · ·+div(xr)+div(e)) is log
smooth at the closed point corresponding to mCox ⊂ Cox(Y/X). Hence, the elements x1, . . . , xr, e generate
mCox. �

Our first step toward a proof of Proposition 7.5 is to show that the formally toric singularity x ∈ X is
formally isomorphic to the singularity at the vertex of the cone over the exceptional divisor E of π with
respect to the semiample Q-divisor −E|E . To this end, we denote by Cone(E,−E|E) the orbifold cone
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corresponding to the semiample and big Q-divisor −E|E and by mv the maximal ideal of the vertex of the
cone which we denote by v. Let R(E,−E|E) be the N-graded ring

R(E,−E|E) :=
⊕

m∈N

H0(E,m(−E|E))t
m ⊂ K(E)[t],

where t is simply an auxiliary indeterminate. We set mE ⊂ R(E,−E|E) to be the maximal ideal

mE :=
⊕

m∈N>0

H0(E,m(−E|E))t
m.

By definition,

Cone(E,−E|E) := Spec(R(E,−E|E))

and mv := mE . Alternatively, taking c ∈ N>0 the least natural number such that −cE|E is Cartier and
denoting by R(c)(E,−E|E) the ring

R(c)(E,−E|E) :=
⊕

m∈N

H0(E,m(−cE|E))t
cm ⊂ K(E)[tc],

then Cone(E,−E|E) can be defined as the normalization of Spec(R(c)(E,−E|E)) inside K(E)(t).

Proposition 7.15. With the notation and assumptions of Construction 7.6,

X̂x ≃ ̂Cone(E,−E|E)v

and under this isomorphism the completions of the Fi correspond to the completions of the toric invariant
divisors of Cone(E,−E|E). In particular, (x ∈ X,

∑r
i=1 Fi) is a formally toric singularity.

Proof. By Lemma 7.14, the spectrum of Cl(Y/X) is regular at the maximal Cl(Yx)-invariant ideal mCox. Let
K[ξ1, . . . , ξr, η] be a free graded K-algebra for which we define the following Cl(Yx)-grading:

deg ξi = [Ei], deg η = [E].(7.2)

Then, we can define the following graded morphism of K-algebras

φ : K[ξ1, . . . , ξr, η] → Cox(Y/X)

ξi 7→ xi η 7→ e

which, by definition, is equivariant for the Cl(Yx)-grading on the two rings. Denoting by ̂Cox(Y/X)mCox

the completion of Cox(Y/X) with the respect to the mCox-adic topology, by Lemma 7.14, φ descends to an
isomorphism of the completions

φ̂ : K[[ξ1, . . . , ξr, η]] → ̂Cox(Y/X)mCox .

Any monomial in the ξ1, . . . , ξr, η has a Cl(Yx)-grading that descends from the Cl(Yx)-grading in (7.2). Such

grading descends also to the images of the monomials via φ̂, as φ is Cl(Yx)-equivariant by construction. By

abusing notation, we will indicate the images of xi and e via the natural map Cox(Y/X) → ̂Cox(Y/X)mCox

with the same notation. Hence, any monomial in the xi, e, i = 1, . . . , r in ̂Cox(Y/X)mCox inherit the same
Cl(Yx)-degree as their original one in Cox(Y/X).

Claim. Let S be the ring of power series on degree 0 monomials on the variables ξ1, . . . , ξr, η. Then,

S = φ̂(R̂mx),

where R̂mx is the completion of Rmx with respect to the mx-adic topology.
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Proof of Claim. The following diagram is commutative and all the arrows correspond to injective morphisms

R //

��

Cox(Y/X)

��

R̂mx
// ̂Cox(Y/X)

mCox

The inclusion R̂mx ⊂ φ̂−1(S) follows from the fact that Rmx consists of fractions of homogenous elements

of Cox(Y/X) of degree 0. On the other hand, any element of φ̂−1(S) can be written as a formal sum of
degree 0 monomials in the xi, e, with respect to the Cl(Yx)-grading. As all such monomials are contained in

R̂mx , by degree considerations, then the inclusion R̂mx ⊂ φ̂−1(S) follows from [18, 3.9.8] since the mCox-adic
topology on Cox(Y/X) induces the mx-adic topology on Rmx . �

Let V ⊂ Nr+1
≥0 be the submonoid defined by

V :=

{
(a1, . . . , ar, b) ∈ Nr+1

∣∣∣
[

r∑

i=1

aiEi + bE

]
= 0 ∈ Cl(Yx)

}
.

Then the above claim shows that there exists an isomorphism

R̂mx ≃





∞∑

(a1,...,ar,b)∈V

c(a1,...,ar.b)ξ
a1
1 . . . ξarr η

b, c(a1,...,ar,b) ∈ K



 ,(7.3)

Given a degree 0 monomial ξa11 . . . ξarr η
b the exponent b of η is automatically defined by the Cl(Yx)-grading

and the exponents ai of the ξi, since [
r∑

i=1

aiEi

]
= [−bE] ∈ Cl(Yx).

Defining a morphism τ of monoids by

τ : Zr≥0 → Cl(Yx)

(a1, . . . , ar) 7→

[
r∑

i=1

aiEi

]
,

and defining V ′ := τ−1(N[−E]), then monomials of degree 0 in the ξi, η are all of the following form

ξa11 . . . ξarr η
τ̃(a1,...,ar) for (a1, . . . , ar) ∈ V ′,(7.4)

where τ̃ (a1, . . . , ar) is the unique non-negative integer such that [
∑
aiEi + τ̃ (a1, . . . , ar)E] = 0 ∈ Cl(Yx).

Thus, τ̃ induces a natural N-grading τ̃ : V ′ → N on the monomials in (7.4) defined by simply defining the
degree of ξa11 . . . ξarr , for (a1, . . . , ar) ∈ V ′, to be τ̃ (a1, . . . , ar). This observation and the Claim imply that
there exists an isomorphism

R̂mx ≃ S′ :=





∞∑

(a1,...,ar)∈V ′

c(a1,...,ar)y
a1
1 . . . yarr , c(a1,...,ar) ∈ K



 ,(7.5)

where the multiplication for the ring on the right is simply determined by the multiplication of the monomials
in the yi. In particular, the ring S′ in (7.5) is isomorphic to S, by (7.3); thus, S′ is normal, being isomorphic
to the completion of a normal excellent local ring. Moreover, as V ′ is the set of integral points of a saturated
rational polyhedral cone by construction, cf. Lemma 7.11, then S′ is the completion of the monomial ring
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K[V ′] whose spectrum is a normal toric variety.
To conclude the proof, we just need to show that

X̂x ≃ ̂Cone(E,−E|E)v.(7.6)

As −E|E has fractional coefficients only along the torus invariant divisors of E, Cone(E,−E|E) is endowed
with a natural structure of an affine toric variety, cf. also the paragraph before the statement of the
proposition. By Lemma 7.10, Cl(E) is torsion-free; let c be the minimal positive natural number such that
cE is Cartier along E. By relative Kawamata-Viehweg vanishing applied to the short exact sequence,

0 // OY (−(ct+ 1)E) // OY (−ctE) // OE(−ctE|E) // 0, t ∈ Z≥0,

it follows immediately that

H0(Y,OE(−ctE|E)) ≃ π∗OY (−ctE)/π∗OY (−(ct+ 1)E).

By construction, a basis of H0(Y,OE(−ctE|E)) is given by restricting to E monomials of the form

xa11 . . . xarr for (a1, . . . , ar) ∈ V ′ and τ̃ (a1, . . . , ar) = ct.

Hence, defining V ′
c to be the monoid V ′

c := V ′∩τ̃−1(Nc), then R(c)(E,−E|E) is isomorphic as a graded algebra
to the K-algebra K[V ′

c ] generated by monomials xa11 . . . xarr with (a1, . . . , ar) ∈ V ′
c . As, the normalization of

K[V ′
c ] is K[V ′] then R(E,−E|E) ≃ K[V ′] and passing to the completions we obtain that

̂R(E,−E|E)mE ≃





∞∑

(a1,...,ar)∈V ′

c(a1,...,ar)y
a1
1 . . . yarr , c(a1,...,ar) ∈ K



(7.7)

and the isomorphism in (7.6) follows from (7.5). As in (7.5) the support of any monomial in the yi is contained
in
∑r
i=1 Fi, while in (7.7) such monomials correspond to toric invariant elements, then it immediately follows

that the
∑r
i=1 Fi is a formally toric divisor, which concludes the proof. �

7.2.2. The general case. We proceed to prove Proposition 7.5 in full generality, i.e., without assuming that
the Cl(Yx) is torsion free. In order to do so, we will reduce the general case, inductively, to the one in
which Cl(Xx) is torsion free case by means of appropriate Galois coverings. To this end, let us introduce the
following notion of toric formality for finite group actions.

Definition 7.16. Let G be a finite abelian group. Let x ∈ X be a formally toric singularity and let

G Xρ 88 be a faithful action fixing x. We say that the action ρ is a formally toric action if there exists a

formal isomorphism φ : X̂x → Ẑz to the completion of an affine toric variety Z at a torus invariant point z

and a faithful action Z ρ′ff G fixing z such that the actions induced by ρ and ρ′ at the level of completions
at x and z, respectively, are conjugate via φ.

Proposition 7.17. Let (x ∈ X,Γ) be a germ of a klt pair. Assume that (x ∈ X,Γ) admits a formally toric

plt blow-up π : Y → X of exceptional divisor E. Then, X̂x ≃ ̂Cone(E,−E|E)v and the divisor
∑r
i=1 Fi is

mapped to the toric divisor of ̂Cone(E,−E|E)v. In particular, the pair (X,
∑r
i=1 Fi) is formally toric at x.

Proof. We proceed by induction order of the torsion subgroup of Cl(Xx). If the torsion subgroup of Cl(Xx)
is trivial, then Proposition 7.15 concludes the proof.
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Let W be a torsion Weil divisor in Cl(Xx) of order l > 0. We have the following commutative diagram

Ỹ

π̃
��

ψỸ // Y

π

��
X̃

ψ
X̃ // X

(7.8)

where ψX̃ : X̃ → X is the index one cover of W and Ỹ is the normalization of the main component of

Y ×X X̃. The morphism ψX̃ is a Zl-Galois cover which is unramified in codimension one; moreover, the fibre

ψ−1

X̃
(x) over x consists of a unique point x̃ ∈ X̃. Then, X̃ = Spec(R̃), R̃ := ⊕l−1

j=0H
0(X,OX(−jW )) and we

shall denote by mx̃ ⊂ R̃ be the maximal ideal corresponding to x̃. Moreover, the cyclic Galois Zl action on

X̃ induces by construction a Zl-action on Ẽ such that Ẽ/Zl = E and a Zl-action on R(Ẽ, Ẽ|Ẽ) such that

R(Ẽ, Ẽ|Ẽ)
Zl = R(E,E|E).

Let (Ỹ , Ẽ) be the log pull-back of (Y,E) on Ỹ . As (Y,E) is plt, the same holds for (Ỹ , Ẽ); in particular, Ẽ
is normal and irreducible, and

ψ∗
Ỹ
(KY + E) = KỸ + Ẽ.

Let (X̃,ΓX̃) (resp. (X̃, ⌈ΓX̃⌉)) be the log pull-back of (X,Γ) (resp. (X, ⌈ΓX⌉)) on X̃. Let us recall that

⌈ΓX⌉ =
∑r

i=1 Fi and Ei = π−1
∗ Fi. We shall denote by F̃i the reduced support of ψ−1

X̃
(Fi), and Ẽi := (π̃)−1

∗ F̃i.

Then,

ψ∗
Ỹ
(KY + E +

r∑

i=1

Ei) = KỸ + Ẽ +

r∑

i=1

Ẽi.(7.9)

Defining ΓE (resp. ΓẼ) on E (resp. Ẽ) by the adjunction formula

(KY + E +

r∑

i=1

Ei)|E = KE + ΓE , (resp. (KỸ + Ẽ +

r∑

i=1

Ẽi)|Ẽ = KẼ + ΓẼ

then (7.9) implies that

KẼ + ΓẼ = ψX̃ |∗
Ẽ
(KE + ΓE)(7.10)

Claim 1. The following properties hold for the varieties in (7.8):

(1) Ẽ is a projective toric variety;

(2) ClQ(Ẽ) ≃ ClQ(E);

(3) Ỹ is Q-factorial around Ẽ and π̃ is a Q-factorial plt blow for (X̃,ΓX̃);

(4) π̃ is a formally toric plt blow-up for (X̃,ΓX̃);

(5) rankCl(Xx) = rankCl(X̃x̃);

(6) cx̃(X̃, ⌈ΓX̃⌉) = 0; and,

(7) |Cl(X̃x̃)tor| < |Cl(Xx)tor|.

Proof of the Claim. (1) By (7.9), the finite morphism Ẽ → E is unramified over the torus of E, which

in turn implies the toricness of Ẽ.

(2) The morphism π̃|Ẽ : Ẽ → E is a Galois quotient by a Zl subgroup of the torus of Ẽ. Hence, every

torus invariant divisor on Ẽ is invariant for such action and ClQ(Ẽ) ≃ ClQ(E).
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(3) By (2), the classes ψ∗
Ỹ
Ei|Ẽ generate ClQ(Ẽ) as a Q-vector space, since each Ei is supported at

a unique torus invariant prime divisor Ti ⊂ E, all of the Ti appear in the support of some Ei,

and Ẽ → E only ramifies along the divisors Ti. As the pair (Ỹ , Ẽ) is plt and (X̃, x̃) supports a

klt singularity, then the Q-factoriality of Ỹ follows from [25, Proposition 12.1.4] as in the proof of

Lemma 7.9. As Ẽ = suppψ∗
Ỹ
E, then −Ẽ is nef over X̃ and π̃ is a Q-factorial plt blowup

(4) By (1) and (3), it suffices to prove that each Ẽi is prime. For the sake of contradiction, up to

re-ordering the indices, let us assume that Ẽ1 is not prime. We know that Ẽ1 ∩ Ẽ is supported at a

prime toric divisor of Ẽ by (1). As the log pair (Ỹ , Ẽ1 + Ẽ) is log canonical and Q-factorial at the

generic point of Ẽ1∩ Ẽ, by [21, Theorem 18.22], we conclude that Ẽ1 must be prime. The analogous

argument applies to the other Ẽi.
(5) The same proof as in Lemma 7.12 applies here, since, by (4) π̃ is a formally toric plt blow-up for

(X̃,ΓX̃).

(6) Indeed, |⌈ΓX̃⌉| ≥ |⌈ΓX⌉| and dim(X) = dim(X̃). By (5) then cx̃(X̃, ⌈ΓX̃⌉) = 0.

(7) The homomorphism ψ∗ : Cl(X, x)tor → Cl(X̃, x̃)tor is surjective by Lemma 7.18 since Cl(X, x)tor is

isomorphic to the abelianization of πloc
1 (X, x), see [9, Corollary 4.15]. Thus, |Cl(X̃x̃)tor| ≤ |Cl(Xx)tor|

and the inequality is strict since [W ] lies in the kernel of ψ∗
X̃
.

�

By properties (6) and (7) of the claim, and the inductive hypothesis, (x̃ ∈ X̃,
∑r

i=1 F̃i) is a locally toric
singularity and there exists an isomorphism

̂̃
Xx̃ ≃ ̂

Cone(Ẽ,−Ẽ|Ẽ)ṽ,(7.11)

where ṽ is the vertex of Cone(Ẽ,−Ẽ|Ẽ). Under the isomorphism in (7.11) the divisor
∑r

i=1 F̃i is mapped,

upon passing to the completion, onto the sum of the toric invariant divisor of Cone(Ẽ,−Ẽ|Ẽ). Thus, the

action of a formal torus exists in the completion
̂̃
Xx̃ since x̃ ∈ X̃ is a formally toric singularity. Moreover, the

(formal) torus is uniquely determined since
∑

i F̃i is mapped to the full sum of the torus invariant divisors
under the isomorphism in (7.11).

Claim 2. The action of Zl on
̂̃
Xx̃ factors through the torus action.

Proof of Claim 2. Indeed,
̂̃
Xx̃ is isomorphic to the spectrum of K[[xm1 , . . . , xmk ]] for certain monomials xmi

in the variables x1, . . . , xr. Each monomial xm1 defines a Cartier divisor on the germ supported on the

F̃i, hence its divisor of zeroes is fixed under the Zl-action on X̃. In particular, given g a generator of Zl,
g · xm1 = uxm1 for a certain unit u ∈ K[[xm1 , . . . , xmk ]]∗. Since g has order l, we can conclude that ul = 1

and u is a root of unity. Hence, Zl is a subgroup of the maximal torus of
̂̃
Xx̃. �

By Claim 2, the Zl-action on
̂̃
Xx̃ is formally toric in the sense of Definition 7.16. In particular, it is compatible

with the Zl action on the cone
̂

Cone(Ẽ,−Ẽ|Ẽ)ṽ. Given that X̃/Zl = X and under this identification x̃ is
identified with x, we can conclude that

X̂x =
̂̃
Xx̃/Zl ≃

̂
Cone(Ẽ,−Ẽ|Ẽ)ṽ/Zl =

̂Cone(E,−E|E)v.(7.12)

�

Proof of Proposition 7.5. This immediately follows from Proposition 7.17. �
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In the course of the proof of Proposition 7.17, we have used the following technical result.

Lemma 7.18. Let Y → X be a formally toric plt blow-up at x ∈ X. Then, the local fundamental group
πreg
1 (X, x) is a finite abelian group.

Proof. The argument is essentially contained in [8, Proof of Theorem 4.11]. Indeed, as the normal sheaf
E|E of E in Y is Cartier and trivializes over the torus GdimE

m of E, the commutative diagram contained
in [8, (4.1)] yields the split short exact sequence

1 → Z → G→ π1((K
∗)dimE) → 1.

By [8, Proposition 4.9], the abelian group G surjects onto πreg
1 (X, x). Since πreg

1 (X, x) is finite, we conclude
that it is a finite abelian group of rank at most dim(X). �

In the next section, we will also use the following technical result showing that every log canonical place
of the round-up of the boundary in a formally toric blow-up yields a formally toric log canonical place, see
Definition 3.46 for the relevant notion.

Proposition 7.19. Let (x ∈ X,Γ) be a germ of a klt pair. Assume that (x ∈ X,Γ) admits a formally toric
plt blow-up π : Y → X at x ∈ X and let E be the exceptional divisor on π. Let F be an lc place of (X, ⌈Γ⌉),
other than E, whose center contains x. Then F is a formally toric lc place for (x ∈ X, ⌈Γ⌉).

Proof. Let ΓY be the strict transform of Γ on Y ; we will denote its components by Ei, i = 1, . . . , r.
By Proposition 7.5, (x ∈ X,Γ) is a formally toric singularity and π is formally toric at x with respect to the
pair (Y, ⌈ΓY ⌉+ E). In particular, there exists a diagram, cf. (3.20),

Ŷ (Ξ)z0 := Y (Ξ) ×Z Ẑ(σ)z0

f̃t
��

Ŷx := Y ×X X̂x

f̃

��

ψoo

Ẑ(σ)z0 X̂x
φ

oo

(7.13)

satisfying the conditions of Definition 3.42. In particular, the base change of the prime divisors Ei and E to

Ŷx are mapped via ψ to the base change of the torus invariant divisors Ξ1, . . . ,Ξr,ΞE of Y (Ξ) to Ẑ(σ)z0 .
By definition of a formally toric plt blow-up, (Y, ⌈ΓY ⌉+E) is qdlt along E, cf. Remark 6.3 and Lemma 3.41;
the same conclusion must holds also in a neighborhood of E in Y . By this observation and by condition (4)
of Definition 6.2, it follows that any lc center C of (Y, ⌈ΓY ⌉+E) is uniquely determined by those components
among the Ei and E containing its generic point ηC ; in particular, C∩E is irreducible. Hence, on Y , any log
canonical place F of (Y, ⌈ΓY ⌉+E) intersecting E non-trivially can be extracted by the normalized blow-up of
an ideal sheaf of the form IF := Im1

E1
∩· · ·∩Imr

Er
∩ImE

E , for certain non-negative integersm1, . . . ,mr,mE , see,
for example, [12, §11.3]. Hence, via (7.13), the ideal IF is mapped to the ideal IΞF := Im1

Ξ1
∩· · ·∩Imr

Ξr
∩ImE

ΞE
,

upon passing to the appropriate completions. Blowing up Y (Ξ) along the toric ideal IΞF extracts a toric
valuation ΞF which is an lc place of the torus invariant divisor Ξ1 + · · ·+ Ξr + ΞE on Y (Ξ). The existence
of such valuation shows that F is a formally toric lc place for the pair (X, ⌈Γ⌉). �

8. Proof of the main results

The aim of this section is to provide a proof of the following more general version of Theorem 3.

Theorem 8.1. Let (X/Z,B+M) be a generalized log canonical pair and let z ∈ Z be a closed point. Assume
that

KX +B +M ∼Q,Z 0.
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Then,

cz(X/Z,B +M) ≥ cz(X/Z,B +M) ≥ ĉz(X/Z,B +M) ≥ 0,

and if the equality

cz(X/Z,B +M) = 0

holds, then the following conditions are satisfied:

(1) M descends to a torsion divisor over a neighborhood of z;
(2) X → Z is formally toric at z for (X, ⌊B⌋); and,
(3) if Σ is an orbifold decomposition of B such that ĉz(X/Z,B; Σ) = 0, then all prime divisors appear

in the support of Σ.

8.1. Local case. We prove the following local version of Theorem 8.1.

Theorem 8.2. Let (X,B) be a log canonical pair and let x ∈ X be a closed point. Assume that ĉx(X,B) = 0.
Then (x ∈ X, ⌊B⌋) is a formally toric singularity. Moreover, the components of B span ClQ(Xx).

Proof. Let (X,B) be a log canonical pair such that ĉx(X,B) = 0. By Corollary 6.7, there exists a boundary
Γ on X such that

• 0 ≤ Γ ≤ ⌈B⌉, ⌊B⌋ ≤ ⌈Γ⌉;
• (X,Γ) is klt;
• (X,Γ) admits a formally toric plt blow-up π : Y → X ; and,
• π extracts a log canonical place E of (X, ⌈Γ⌉) over x ∈ X .

The conclusion then follows by Proposition 7.5. To prove the last part of the statement, it suffices to notice
that the components of Γ span ClQ(Xx), by Corollary 6.5. �

As an immediate corollary, we have the following result.

Corollary 8.3. Let (X,B+M) be a generalized log canonical pair and let x ∈ X be a closed point. Assume
that ĉx(X,B+M) = 0. Then, any log canonical place of (X,B+M) is formally toric for the formally toric
structure provided by Theorem 8.2.

Proof. By Corollary 6.7, M descends on a neighborhood of x ∈ X and we may drop M to simply consider
the log canonical pair (X,B). Moreover, the log canonical places of (X,B+M) are exactly the log canonical
places of (X,B), and ĉx(X,B) = 0. By Theorem 8.2, (x ∈ X, ⌊B⌋) is a formally toric singularity.
Let Γ be the boundary whose existence is guaranteed by Corollary 6.7. Γ satisfies the following properties:

• 0 ≤ ΓX ≤ ⌈B⌉, ⌊B⌋ ≤ ⌈ΓX⌉;
• (X,ΓX) is klt;
• (X,ΓX) admits a formally toric plt blow-up π : Y → X ; and,
• π extracts a log canonical place E of (X, ⌈ΓX⌉) over x ∈ X .

By the proof of Proposition 6.6, cf. Step 0 there, E is a log canonical center of (X,B). By Proposition 7.17,

the completion X̂x of X at x is isomorphic to the completion of a toric cone C := Spec(⊕∞
l=0H

0(E, lE|E))
at the vertex v corresponding to the maximal ideal ⊕∞

l>0H
0(E, lE|E) of the section ring.

Let F be an lc place of (X,B) whose center passes through x ∈ X : there exists a projective birational
morphism t : Y ′ → Y such that Y ′ is Q-factorial and t only extracts F , cf. [29, Theorem 1]. Let E′ be the
strict transform of E on Y ′. Thus,

KY ′ +BY ′ = (π ◦ t)∗(KX +B), BY ′ := (π ◦ t)−1
∗ B + E′ + F,

and ĉx(Y
′/X,BY ′) = 0, by Lemma 3.32. Furthermore, we can assume that there exists a decomposition Σ of

BY ′ such that ĉx(Y
′/X,BY ′ ; Σ) = 0 and E′, F are orbifold Weil divisors of coefficient 1 in the decomposition
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Σ. By the connectedness of log canonical centers, [15, Theorem 1.1], F ∩E′ 6= ∅. Thus, by adjunction along
E′, there exists a log canonical pair (E′, B′

E′) such that

(KY ′ +BY ′)|E′ = KE′ +BE′ .

Claim. The prime divisor E′ is a normal toric variety and the support of F |E′ is torus invariant on E′.

Proof of the Claim. To prove normality of E′, it suffices to show that E′ is smooth in codimension 1, since
E′ is a divisorial lc center of a log canonical pair. Away from F ∩ E′, certainly E′ is normal, since r|X\F

is an isomorphism. On the other hand, along the codimension 2 points of E′ ∩ F ⊂ Y ′, E′ is normal by
adjunction, since (Y ′, BY ′) is lc and BY ′ ≥ E′ + F . Hence, t′ := t|E′ : E′ → E is a birational morphism of
normal varieties, and

(t′)∗(KE +BE) = KE′ +BE′ ,

where the divisor BE is defined by KE+BE = (KY +E+π−1
∗ B)|E . By construction, ĉ(E,BE) = 0 and since

t′ only extracts prime divisors G1, . . . , Gh contained in F ∩ E′, so that BE′ ≥
∑h

i=1Gi, then Lemma 3.32
implies also that ĉ(E′, BE′) = 0. By Theorem 4.5, E′ must be toric and the Gi are toric prime divisors. To
show that F ∩ E′ is torus invariant, it suffices to notice that since BY ′ ≥ E′ + F , then any component of
F ∩ E′ appears with coefficient 1 in BE′ . �

Writing the log pullback formula

KY ′ + (π ◦ t)−1
∗ ⌈ΓX⌉+ E′ + (1− a)F = (π ◦ t)∗(KX + ⌈ΓX⌉),(8.1)

then a ≥ 0 and if a = 0, F is a lc center of (X, ⌈ΓX⌉). By construction, on E′

(t′)∗((KY + E + π−1
∗ ⌈ΓX⌉)|E) = (t∗(KY + E + π−1

∗ ⌈ΓX⌉))|E′ , and(8.2)

(KY + E + π−1
∗ ⌈ΓX⌉)|E = KE +

r∑

i=1

Ti,(8.3)

where the Ti are all torus invariant divisors on E. By the Claim above,

(t′)∗(KE +
r∑

i=1

Ti) = KE′ + (t′)−1
∗

r∑

i=1

Ti +G,(8.4)

where G is the torus invariant divisor on E′ supporting F ∩ E′. As ΓX is supported on the components of
B and KY ′ +BY ′ is log canonical, then, writing,

(KY ′ + (π ◦ r)−1
∗ ⌈ΓX⌉+ E′ + (1− a)F )|E′ = KE′ +∆E′

the coefficient of each component of G in ∆E′ is 1 if and only if a = 0. Combining this observation with
(8.1)-(8.4), then a = 0 and, thus, F is an lc place of (X, ⌈ΓX⌉). Hence, F is a formally toric lc place of
(X, ⌈ΓX⌉) by Proposition 7.19. �

8.2. Birational case. We prove the following birational version of Theorem 8.1.

Theorem 8.4. Let X → Z be a birational contraction and z ∈ Z a closed point. Let (X,B +M) be a
generalized log canonical pair. Assume that KX + B +M ∼Q,Z 0 and cz(X/Z,B +M) = 0. Then X → Z
is formally toric over z ∈ Z with respect to the pair (X, ⌊B⌋).

Proof. Let BZ be the pushforward of B on Z. By Proposition 6.6, there exists an effective divisor ΓZ on Z
satisfying the following properties:

• 0 ≤ ΓZ ≤ ⌈BZ⌉, ⌊BZ⌋ ≤ ⌈ΓZ⌉;
• (Z,ΓZ) is klt;
• (Z,ΓZ) admits a formally toric plt blow-up π : Y → Z; and,



54 J. MORAGA AND R. SVALDI

• π extracts a log canonical place E of (Z, ⌈ΓZ⌉) over z.

Moreover,M descends over a neighborhood of z ∈ Z, so that (X,B) is log canonical onX andKX+B ∼Q,Z 0.
By Lemma 3.31, there exists an lc center of (X,B) contained in the fiber over z. Possibly passing to an
appropriate dlt modification of (X,B), we may assume that the fiber on X over z contains a a divisorial lc
place E of (X,B). By Lemma 3.32.1, the latter operation will not affect cz(X/Z,B). Then, by [5, Theorem
1.1], we may run a minimal model program for −E over Z with scaling of an ample divisor and that will
terminate with a good minimal model Y over Z.
By the proof of Proposition 6.6, the birational morphism Y → Z is of Fano type: such model will be a
Q-factorial plt blow-up of (Z,ΓZ). Running the EY -MMP on Y over Z, where EY is the strict transform
of E on Y , that will terminate with a small Q-factorialization Y ′ → Z of Z. By Corollary 3.35.1, since
X 99K Y ′ over Z is a composition of divisorial contractions of lc centers of (Z,BZ) and small maps, then
cz(Y

′/Z,BY ′) = 0, where BY ′ is the strict transform of B on Y ′. Hence, (Y ′, BY ′) is a Q-factorial log
canonical pair together with a small morphism Y ′ → Z and ĉz(Y

′/Z,BY ′) = 0. This implies also that
ĉz(Z,BZ) = 0.
By Theorem 8.2, we conclude that (z ∈ Z, ⌊BZ⌋) is a formally toric germ. Hence, by Lemma 3.47, Y ′ → Z
is a formally toric morphism, being a small Q-factorialization of a formally toric germ. Moreover, ⌊BY ′⌋ is
formally toric for the morphism Y ′ → Z. By Corollary 8.3, every lc place of (Z,BZ) is formally toric; thus,
X → Z only extract formally toric lc places of (Z,BZ). Again, by Lemma 3.47, then X → Z is formally
toric and ⌊B⌋ is formally toric as well. �

8.3. Fibration case. In this subsection, we shall prove Theorem 8.1 when X → Z is a fibration. More
precisely, following statement.

Theorem 8.5. Let π : X → Z be a fibration of normal varieties. Let z ∈ Z be a closed point. Let (X,B+M)
be a generalized log canonical pair. Assume that KX+B+M ∼Q,Z 0 and cz(X/Z,B) = 0. Then π is formally
toric over z ∈ Z with respect to the pair (X, ⌊B⌋) and M is trivial over a neighborhood of z ∈ Z.

Proof. Let A be a divisor on X which is relatively very ample over Z. Let C := CA(X/Z) be the relative cone
of X over Z, with respect to the relative polarization given by A – that is, C is the relative spectrum over
Z of the OZ -algebra

⊕
m≥0 π∗OX(mA). By construction, C has a natural K∗-action given by the grading

on
⊕

m≥0 π∗OX(mA). Let c : C → X be the associated morphism: c admits a section σ : Z → C which

is K∗-invariant. Let C∞ the relative spectrum over X of the OX -algebra ⊕m≥0OX(mA). There exists a
natural morphism γ : C∞ → C which contracts the prime divisor X∞ ⊂ C∞ isomorphic to X down to σ(Z).
We denote zC := σ(z) ∈ C and c∞ : C∞ → X the structure morphism.
We wish to define a generalized pair on C. We proceed as follows: letting B =

∑r
i=1 biBi be the decomposi-

tion of B into its prime components, then we define the boundary BC :=
∑r

i=1 biBi,C where Bi,C := c−1(Bi).
For the nef part: let X ′ → X be a model where M descends and let M ′ be the trace of the b-divisor on X ′

so that M ′ is nef over Z; let π′ : X ′ → Z the contraction obtained composing π with X ′ → X . Let A′ be
the pull-back of A to X ′ and let C′

∞ be the relative spectrum over X ′ of the OX′-algebra
⊕

m≥0 OX′(mA′).

Let MC′

∞
be the pull-back of M ′ to C′

∞ and let MC∞
the pushforward of MC′

∞
to C∞.

By construction, defining BC∞
:=
∑r

i=1 biBi,C∞
, Bi,C∞

:= c−1
∞ (Bi), then (C∞, X∞ + BC∞

+MC∞
) is a

generalized log canonical pair and

KC∞
+X∞ +BC∞

+MC∞
|X∞

= c∞|∗X∞
(KX +B +M)

since c∞|X∞
: X∞ → X is an isomorphism by construction. Hence,

KC∞
+X∞ +BC∞

+MC∞
|X∞

∼Q,Z 0,
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which in turn implies that (C,BC +MC) is a generalized log canonical pair for which the subvariety σ(Z)
is a log canonical center since the birational morphism C∞ → C contracts the divisor X∞ to σ(Z) and
KC∞

+X∞ +BC∞
+MC∞

|X∞
is torsion along all fibers of such contraction. Moreover,

|BC | = |B|, dimC = dimX + 1, and(8.5)

dimQ ClQ(X/Z)− 1 ≥ dimQ ClQ(CzC ).(8.6)

To prove that (8.6) holds, first let us notice that, since C∞ → X is a A1-bundle, then dimQ ClQ(C∞) =
dimQ ClQ(X); moreover, the morphism γ only contracts the prime divisor X∞, while the pullback of any
Cartier divisor on Z to C is trivial in a neighborhood of zC . Thus, ĉzC (C,BC + MC) ≤ 0, and so by
Corollary 5.4 equality must hold. By Theorem 8.2, we conclude that

(a) (C, ⌊BC⌋) is formally toric pair at zC , and
(b) MC descends over a neighborhood of zC .

By Corollary 8.3, X∞ is a formally toric lc place at zC , thus, Lemma 3.47 implies that γ : C∞ → C is
formally toric around zC with respect to the pair (C∞, X∞ + ⌊BC∞

⌋). Then, since we have the following
commutative diagram

X∞
c∞|X∞ //

γ|X∞

��

X

π

��
zC ∈ σ(Z)

σ−1

// Z ∋ z

(8.7)

and the morphism γ|X∞
in the LHS column of (8.7) is formally toric by the above discusssion, then π : X → Z

is formally toric around z; furthermore, as the restriction of ⌊BC∞
⌋ to X∞ is formally toric and it is mapped

to ⌊B⌋ via c∞|X∞
, we can conclude that π is formally toric with respect to the pair (X, ⌊B⌋). Moreover,

conclusion (b) above and the commutative diagram in (8.7) imply thatM must descend over a neighborhood
of z, since, by construction,

c∞|∗X∞
M =MC∞

|X∞.

�

8.4. Conclusion.

Proof of Theorem 8.1. Let (X/Z,B+M) be a generalized log canonical pair, such that KX+B+M ∼Q,Z 0.
Let z ∈ Z be a closed point and Σ be an orbifold decomposition of B. By Theorem 5.3, ĉz(X/Z,B+M ; Σ) ≥ 0
and Lemma 3.25 implies that cz(X/Z,B +M) ≥ cz(X/Z,B +M) ≥ ĉz(X/Z,B +M ; Σ).
Now, we turn to prove the characterization of morphism with complexity zero. If X → Z is formally toric
over z ∈ Z, then the toric boundary has complexity zero. Hence, it suffices to prove that absolute complexity
zero implies both, that X → Z is formally toric over z ∈ Z and M descends over a neighborhood of z. Thus,
we can assume that cz(X/Z,B +M) = 0. If X → Z is the identity, then the statement of the theorem
follows from Theorem 8.2. If X → Z is a birational morphism, the statement follows from Theorem 8.4.
Finally, if X → Z is a fibration, then Theorem 8.5 concludes the proof. �

Proof of Theorem 1. This follows at once from Theorem 8.1 simply by taking M = −(KX +B). �

Proof of Theorem 2. It suffices to notice that by Definition 3.27 dimX+rankCl(Xx)−
∑n
i=1 bi = cx(X,B).

Thus, Corollary 5.4 implies that cx(X,B) ≥ 0 and if equality holds, then the formal toricness of (X, ⌊B⌋) at
x follows from Theorem 8.2. �
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[18] A. Grothendieck. Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. Inst.

Hautes Études Sci. Publ. Math., 1(8):222, 1961. URL http://www.numdam.org/item?id=PMIHES_1961__8__222_0 .
[19] C. D. Hacon and J. McKernan. The Sarkisov program. J. Algebraic Geom., 22(2):389–405, 2013.

doi:10.1090/S1056-3911-2012-00599-2.
[20] R. Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
[21] K. J. et al., editors. Flips and abundance for algebraic threefolds. Société Mathématique de France, Paris, 1992. Papers
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