We prove some higher dimensional generalizations of the slope inequality originally due to G. Xiao, and to M. Cornalba and J. Harris. We give applications to families of KSB-stable and K-stable pairs, as well as to the study of the ample cone of the moduli space of KSB-stable varieties. Our proofs rely on the study of the Harder-Narasimhan filtration, and some generalizations of Castelnuovo's and Noether's inequalities.
Slope inequalities for KSB-stable and K-stable families / G. Codogni, L. Tasin, F. Viviani. - In: PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6115. - 126:4(2023 Apr), pp. 1394-1465. [10.1112/plms.12512]
Slope inequalities for KSB-stable and K-stable families
L. Tasin
Penultimo
;
2023
Abstract
We prove some higher dimensional generalizations of the slope inequality originally due to G. Xiao, and to M. Cornalba and J. Harris. We give applications to families of KSB-stable and K-stable pairs, as well as to the study of the ample cone of the moduli space of KSB-stable varieties. Our proofs rely on the study of the Harder-Narasimhan filtration, and some generalizations of Castelnuovo's and Noether's inequalities.File | Dimensione | Formato | |
---|---|---|---|
Slope inequalities for KSB-stable and K-stable families, 2023.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
782.19 kB
Formato
Adobe PDF
|
782.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2107.09553.pdf
accesso aperto
Descrizione: Arxiv version
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
717.25 kB
Formato
Adobe PDF
|
717.25 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.