The paper presents a reference service architecture for legal knowledge extraction based on a combination of Natural Language Processing and Machine Learning techniques/services. A case-study as well as experimental results are presented based on a pilot dataset of civil court decisions in the framework of the NGUPP project funded by the Italian Ministry of Justice.

A Service Architecture for AI-based Legal Knowledge Extraction / V. Bellandi, S. Castano, S. Montanelli, D. Riva (CEUR WORKSHOP PROCEEDINGS). - In: SEBD 2023 : 31st Symposium of Advanced Database Systems / [a cura di] D. Calvanese, C. Diamantini, G. Faggioli, N. Ferro, S. Marchesin, G. Silvello, L. Tanca. - [s.l] : CEUR Workshop Proceedings, 2023. - pp. 110-119 (( convegno Symposium of Advanced Database Systems tenutosi a Galzignano Terme nel 2023.

A Service Architecture for AI-based Legal Knowledge Extraction

V. Bellandi
Primo
;
S. Castano
Secondo
;
S. Montanelli
Penultimo
;
D. Riva
Ultimo
2023

Abstract

The paper presents a reference service architecture for legal knowledge extraction based on a combination of Natural Language Processing and Machine Learning techniques/services. A case-study as well as experimental results are presented based on a pilot dataset of civil court decisions in the framework of the NGUPP project funded by the Italian Ministry of Justice.
Legal Knowledge Extraction; Natural Language Processing; Legal Knowledge Graph; Digital Justice
Settore INF/01 - Informatica
   Nuovi schemi collaborativi tra Università e Uffici Giudiziari Per il miglioramento dell'efficienza e delle Prestazioni della giustizia nell'Italia Nord-Ovest (NEXT GENERATION UPP)
   NEXT GENERATION UPP
   MINISTERO DELLA GIUSTIZIA

   SEcurity and RIghts in the CyberSpace (SERICS)
   SERICS
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   codice identificativo PE00000014
2023
https://ceur-ws.org/Vol-3478/paper35.pdf
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
paper35.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/999210
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact