The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle-and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te-W-Te layers, showing that the behaviour of WTe2 is not strictly two dimensional.

Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2 / P.K. Das, D. Di Sante, I. Vobornik, J. Fujii, T. Okuda, E. Bruyer, A. Gyenis, B.E. Feldman, J. Tao, R. Ciancio, G. Rossi, M.N. Ali, S. Picozzi, A. Yadzani, G. Panaccione, R.J. Cava. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 7:1(2016), pp. 10847.1-10847.9. [10.1038/ncomms10847]

Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2

G. Rossi;
2016

Abstract

The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle-and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te-W-Te layers, showing that the behaviour of WTe2 is not strictly two dimensional.
Settore FIS/03 - Fisica della Materia
2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
ncomms10847-1.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/994508
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 99
  • ???jsp.display-item.citation.isi??? 92
social impact