Thoracic endovascular aortic repair of the ascending aorta is becoming an option for patients considered unfit for open surgery. Such an endovascular procedure requires careful pre-operative planning and the customization of prosthesis design. The patient-specific tailoring of the procedure may call for dedicated tools to investigate virtual treatment scenarios. Given such considerations, the present study shows a computational framework for choosing and deploying stent-grafts via Finite Element Analysis, by supporting the device sizing and selection in a real case dealing with the endovascular treatment of a pseudoaneurysm. In particular, three devices with various lengths and materials were examined. Two off-the-shelf devices were computationally tested: one composed of Stainless Steel rings with a nominal length of 60 mm and another one with Nitinol rings and a distal free flow extension, with a nominal length of 70 mm. In third place, a custom-made stent-graft, also with Nitinol rings and containing both proximal and distal bare extensions with a nominal length of 75 mm, was deployed. The latter solution based on patient morphology and virtually benchmarked in this simulation framework, enhanced the apposition to the wall by reducing the distance between the skirt and the vessel from more than 6 mm to less than 2 mm in the distal sealing zone. Our experience shows that in-silico simulations can help choosing the right endograft for the ascending aorta as well as the right deployment sequence. This process may also encourage vendors to develop new devices for cases where open repair is unfeasible.

Computational simulation of TEVAR in the ascending aorta for optimal endograft selection: A patient-specific case study / R.M. Romarowski, M. Conti, S. Morganti, V. Grassi, M.M. Marrocco-Trischitta, S. Trimarchi, F. Auricchio. - In: COMPUTERS IN BIOLOGY AND MEDICINE. - ISSN 0010-4825. - 103:(2018 Dec 01), pp. 140-147. [10.1016/j.compbiomed.2018.10.014]

Computational simulation of TEVAR in the ascending aorta for optimal endograft selection: A patient-specific case study

S. Trimarchi
Penultimo
;
2018

Abstract

Thoracic endovascular aortic repair of the ascending aorta is becoming an option for patients considered unfit for open surgery. Such an endovascular procedure requires careful pre-operative planning and the customization of prosthesis design. The patient-specific tailoring of the procedure may call for dedicated tools to investigate virtual treatment scenarios. Given such considerations, the present study shows a computational framework for choosing and deploying stent-grafts via Finite Element Analysis, by supporting the device sizing and selection in a real case dealing with the endovascular treatment of a pseudoaneurysm. In particular, three devices with various lengths and materials were examined. Two off-the-shelf devices were computationally tested: one composed of Stainless Steel rings with a nominal length of 60 mm and another one with Nitinol rings and a distal free flow extension, with a nominal length of 70 mm. In third place, a custom-made stent-graft, also with Nitinol rings and containing both proximal and distal bare extensions with a nominal length of 75 mm, was deployed. The latter solution based on patient morphology and virtually benchmarked in this simulation framework, enhanced the apposition to the wall by reducing the distance between the skirt and the vessel from more than 6 mm to less than 2 mm in the distal sealing zone. Our experience shows that in-silico simulations can help choosing the right endograft for the ascending aorta as well as the right deployment sequence. This process may also encourage vendors to develop new devices for cases where open repair is unfeasible.
Ascending aorta; Computational simulations; Finite element analysis; TEVAR
Settore MED/22 - Chirurgia Vascolare
1-dic-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0010482518303135-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 5.99 MB
Formato Adobe PDF
5.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/994338
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact