We consider codimension 1 area-minimizing m-dimensional currents T mod an even integer p=2Q in a C2 Riemannian submanifold Σ of the Euclidean space. We prove a suitable excess-decay estimate towards the unique tangent cone at every point q∈spt(T)∖sptp(∂T) where at least one such tangent cone is Q copies of a single plane. While an analogous decay statement was proved in arXiv:2111.11202 as a corollary of a more general theory for stable varifolds, in our statement we strive for the optimal dependence of the estimates upon the second fundamental form of Σ. This technical improvement is in fact needed in arXiv:2201.10204 to prove that the singular set of T can be decomposed into a C1,α (m−1)-dimensional submanifold and an additional closed remaining set of Hausdorff dimension at most m−2.

Excess decay for minimizing hypercurrents mod 2Q / C. De Lellis, J. Hirsch, A. Marchese, L. Spolaor, S. Stuvard. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 247:(2024 Oct), pp. 113606.1-113606.47. [10.1016/j.na.2024.113606]

Excess decay for minimizing hypercurrents mod 2Q

S. Stuvard
Ultimo
2024

Abstract

We consider codimension 1 area-minimizing m-dimensional currents T mod an even integer p=2Q in a C2 Riemannian submanifold Σ of the Euclidean space. We prove a suitable excess-decay estimate towards the unique tangent cone at every point q∈spt(T)∖sptp(∂T) where at least one such tangent cone is Q copies of a single plane. While an analogous decay statement was proved in arXiv:2111.11202 as a corollary of a more general theory for stable varifolds, in our statement we strive for the optimal dependence of the estimates upon the second fundamental form of Σ. This technical improvement is in fact needed in arXiv:2201.10204 to prove that the singular set of T can be decomposed into a C1,α (m−1)-dimensional submanifold and an additional closed remaining set of Hausdorff dimension at most m−2.
English
minimal surfaces; Plateau’s problem; theory of currents; currents modulo p; regularity theory for elliptic PDE; branched singularities; excess decay; uniqueness of tangent cones
Settore MAT/05 - Analisi Matematica
Settore MATH-03/A - Analisi matematica
Articolo
Esperti anonimi
Ricerca di base
Pubblicazione scientifica
   Geometric Measure Theory: Structure of Singular Measures, Regularity Theory and Applications in the Calculus of Variations
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   2022PJ9EFL_004
ott-2024
9-lug-2024
Elsevier
247
113606
1
47
47
Pubblicato
Periodico con rilevanza internazionale
arxiv
Aderisco
info:eu-repo/semantics/article
Excess decay for minimizing hypercurrents mod 2Q / C. De Lellis, J. Hirsch, A. Marchese, L. Spolaor, S. Stuvard. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 247:(2024 Oct), pp. 113606.1-113606.47. [10.1016/j.na.2024.113606]
open
Prodotti della ricerca::01 - Articolo su periodico
5
262
Article (author)
Periodico con Impact Factor
C. De Lellis, J. Hirsch, A. Marchese, L. Spolaor, S. Stuvard
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0362546X24001251-main.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/993988
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact