In this paper, we introduce and study Carleson and sampling measures on Bernstein spaces on a class of quadratic CR manifold called Siegel CR manifolds. These are spaces of entire functions of exponential type whose restrictions to the given Siegel CR manifold are Lp$L<^>p$-integrable with respect to a natural measure. For these spaces, we prove necessary and sufficient conditions for a Radon measure to be a Carleson or a sampling measure. We also provide sufficient conditions for sampling sequences.

Carleson and sampling measures on Bernstein spaces on Siegel CR manifolds / M. Calzi, M.M. Peloso. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - 296:10(2023 Oct), pp. 4854-4887. [10.1002/mana.202200058]

Carleson and sampling measures on Bernstein spaces on Siegel CR manifolds

M. Calzi
Primo
;
M.M. Peloso
Ultimo
2023

Abstract

In this paper, we introduce and study Carleson and sampling measures on Bernstein spaces on a class of quadratic CR manifold called Siegel CR manifolds. These are spaces of entire functions of exponential type whose restrictions to the given Siegel CR manifold are Lp$L<^>p$-integrable with respect to a natural measure. For these spaces, we prove necessary and sufficient conditions for a Radon measure to be a Carleson or a sampling measure. We also provide sufficient conditions for sampling sequences.
Bernstein spaces; Carleson measures; entire functions of exponential type; Paley-Wiener spaces; quadratic CR manifolds; sampling measures;
Settore MAT/05 - Analisi Matematica
ott-2023
14-lug-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
Carleson-Bernstein-2g.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 605.27 kB
Formato Adobe PDF
605.27 kB Adobe PDF Visualizza/Apri
Mathematische Nachrichten - 2023 - Calzi - Carleson and sampling measures on Bernstein spaces on Siegel CR manifolds.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 462.33 kB
Formato Adobe PDF
462.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/992708
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact