The multifarious internal workings of organisms are difficult to reconcile with a single feature defining a state of 'being alive'. Indeed, definitions of life rely on emergent properties (growth, capacity to evolve, agency) only symptomatic of intrinsic functioning. Empirical studies demonstrate that biomolecules including ratcheting or rotating enzymes and ribozymes undergo repetitive conformation state changes driven either directly or indirectly by thermodynamic gradients. They exhibit disparate structures, but govern processes relying on directional physical motion (DNA transcription, translation, cytoskeleton transport) and share the principle of repetitive uniplanar conformation changes driven by thermodynamic gradients, producing dependable unidirectional motion: 'heat engines' exploiting thermodynamic disequilibria to perform work. Recognition that disparate biological molecules demonstrate conformation state changes involving directional motion, working in self-regulating networks, allows a mechanistic definition: life is a self-regulating process whereby matter undergoes cyclic, uniplanar conformation state changes that convert thermodynamic disequilibria into directed motion, performing work that locally reduces entropy. 'Living things' are structures including an autonomous network of units exploiting thermodynamic gradients to drive uniplanar conformation state changes that perform work. These principles are independent of any specific chemical environment, and can be applied to other biospheres.

Life’s Mechanism / S. Pierce. - In: LIFE. - ISSN 2075-1729. - 13:8(2023 Aug 15), pp. 1750.1-1750.16. [10.3390/life13081750]

Life’s Mechanism

S. Pierce
Writing – Original Draft Preparation
2023

Abstract

The multifarious internal workings of organisms are difficult to reconcile with a single feature defining a state of 'being alive'. Indeed, definitions of life rely on emergent properties (growth, capacity to evolve, agency) only symptomatic of intrinsic functioning. Empirical studies demonstrate that biomolecules including ratcheting or rotating enzymes and ribozymes undergo repetitive conformation state changes driven either directly or indirectly by thermodynamic gradients. They exhibit disparate structures, but govern processes relying on directional physical motion (DNA transcription, translation, cytoskeleton transport) and share the principle of repetitive uniplanar conformation changes driven by thermodynamic gradients, producing dependable unidirectional motion: 'heat engines' exploiting thermodynamic disequilibria to perform work. Recognition that disparate biological molecules demonstrate conformation state changes involving directional motion, working in self-regulating networks, allows a mechanistic definition: life is a self-regulating process whereby matter undergoes cyclic, uniplanar conformation state changes that convert thermodynamic disequilibria into directed motion, performing work that locally reduces entropy. 'Living things' are structures including an autonomous network of units exploiting thermodynamic gradients to drive uniplanar conformation state changes that perform work. These principles are independent of any specific chemical environment, and can be applied to other biospheres.
brownian motor; death; definition of life; feynman–smoluchowski ratchet; heat engine; theory of life;
Settore BIO/03 - Botanica Ambientale e Applicata
15-ago-2023
https://www.mdpi.com/2075-1729/13/8/1750
Article (author)
File in questo prodotto:
File Dimensione Formato  
Pierce 2023 Life-13-01750.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.93 MB
Formato Adobe PDF
3.93 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/992473
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact