The COVID-19 pandemic has illustrated the unprecedented challenges of ensuring the continuity of operations in a supply chain as suppliers’ and their suppliers stop producing due the spread of infection, leading to a degradation of downstream customer service levels in a ripple effect. In this paper, we contextualize a dynamic approach and propose an optimal control model for supply chain reconfiguration and ripple effect analysis integrated with an epidemic dynamics model. We provide supply chain managers with the optimal choice over a planning horizon among subsets of interchangeable suppliers and corresponding orders; this will maximize demand satisfaction given their prices, lead times, exposure to infection, and upstream suppliers’ risk exposure. Numerical illustrations show that our prescriptive forward-looking model can help reconfigure a supply chain and mitigate the ripple effect due to reduced production because of suppliers’ infected workers. A risk aversion factor incorporates a measure of supplier risk exposure at the upstream echelons. We examine three scenarios: (a) infection limits the capacity of suppliers, (b) the pandemic recedes but not at the same pace for all suppliers, and (c) infection waves affect the capacity of some suppliers, while others are in a recovery phase. We illustrate through a case study how our model can be immediately deployed in manufacturing or retail supply chains since the data are readily accessible from suppliers and health authorities. This work opens new avenues for prescriptive models in operations management and the study of viable supply chains by combining optimal control and epidemiological models.

A dynamic approach to supply chain reconfiguration and ripple effect analysis in an epidemic / X. Brusset, D. Ivanov, A. Jebali, D. La Torre, M. Repetto. - 263:(2023), pp. 108935.1-108935.13. [10.1016/j.ijpe.2023.108935]

A dynamic approach to supply chain reconfiguration and ripple effect analysis in an epidemic

D. La Torre
Penultimo
;
M. Repetto
Ultimo
2023

Abstract

The COVID-19 pandemic has illustrated the unprecedented challenges of ensuring the continuity of operations in a supply chain as suppliers’ and their suppliers stop producing due the spread of infection, leading to a degradation of downstream customer service levels in a ripple effect. In this paper, we contextualize a dynamic approach and propose an optimal control model for supply chain reconfiguration and ripple effect analysis integrated with an epidemic dynamics model. We provide supply chain managers with the optimal choice over a planning horizon among subsets of interchangeable suppliers and corresponding orders; this will maximize demand satisfaction given their prices, lead times, exposure to infection, and upstream suppliers’ risk exposure. Numerical illustrations show that our prescriptive forward-looking model can help reconfigure a supply chain and mitigate the ripple effect due to reduced production because of suppliers’ infected workers. A risk aversion factor incorporates a measure of supplier risk exposure at the upstream echelons. We examine three scenarios: (a) infection limits the capacity of suppliers, (b) the pandemic recedes but not at the same pace for all suppliers, and (c) infection waves affect the capacity of some suppliers, while others are in a recovery phase. We illustrate through a case study how our model can be immediately deployed in manufacturing or retail supply chains since the data are readily accessible from suppliers and health authorities. This work opens new avenues for prescriptive models in operations management and the study of viable supply chains by combining optimal control and epidemiological models.
Control; Optimal control; Ripple effect; Risk management; Supply chain adaptation
Settore SECS-S/06 - Metodi mat. dell'economia e Scienze Attuariali e Finanziarie
2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
IJPE_2023.pdf

accesso riservato

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/991072
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 21
social impact