In automotive and industrial domains, the “health monitoring” or “condition monitoring” of electronic devices is gradually playing a key role in manufacturing processes and innovation roadmaps. The concept of health monitoring is often related to the so-called “residual lifetime” of the monitored system. In this work, the authors have designed a deep learning system for the health monitoring of power devices in Silicon Carbide (SiC) technology used in the Traction Inverter Systems of the latest generation electric cars. A Temporal Fusion Transformer embedding such layers of Temporal Convolutional Network with a Multi-Head Attention block for the robust lifetime assessment of SiC power devices, is proposed. Specifically, the designed system predicts such future samples of the ON-state voltage between drain and source of the low-side part of the SiC power module VdsLS , in half-bridge configuration. Extensive literature confirmed that the VdsLS signal can be efficiently used as a robust predictive device-degradation marker. Through the learning of the temporal feature relationships at different scales and the intelligent selection of relevant input features, the proposed solution will discard unnecessary input dynamics building a multi-step predictive model of the VdsLS signal, significantly more performing than the existing state-of-the-art architectures. The proposed deep pipeline has been tested on several ACEPACK TM DRIVE SiC power modules delivered by STMicroelectronics, with an average error of about 0.2% , confirming the effectiveness of the proposed system.
Intelligent traction inverter in next generation electric vehicles: The health monitoring of silicon-carbide power modules / C. Pino, A. Sitta, G. Castagnolo, A.A. Messina, S. Coffa, M. Calabretta, F. Scotti, A. Genovese, V. Piuri, C. Spampinato, F. Rundo. - In: IEEE TRANSACTIONS ON INTELLIGENT VEHICLES. - ISSN 2379-8904. - 8:(2023), pp. 12.4734-12.4753. [10.1109/TIV.2023.3294726]
Intelligent traction inverter in next generation electric vehicles: The health monitoring of silicon-carbide power modules
F. Scotti;A. Genovese;V. Piuri;
2023
Abstract
In automotive and industrial domains, the “health monitoring” or “condition monitoring” of electronic devices is gradually playing a key role in manufacturing processes and innovation roadmaps. The concept of health monitoring is often related to the so-called “residual lifetime” of the monitored system. In this work, the authors have designed a deep learning system for the health monitoring of power devices in Silicon Carbide (SiC) technology used in the Traction Inverter Systems of the latest generation electric cars. A Temporal Fusion Transformer embedding such layers of Temporal Convolutional Network with a Multi-Head Attention block for the robust lifetime assessment of SiC power devices, is proposed. Specifically, the designed system predicts such future samples of the ON-state voltage between drain and source of the low-side part of the SiC power module VdsLS , in half-bridge configuration. Extensive literature confirmed that the VdsLS signal can be efficiently used as a robust predictive device-degradation marker. Through the learning of the temporal feature relationships at different scales and the intelligent selection of relevant input features, the proposed solution will discard unnecessary input dynamics building a multi-step predictive model of the VdsLS signal, significantly more performing than the existing state-of-the-art architectures. The proposed deep pipeline has been tested on several ACEPACK TM DRIVE SiC power modules delivered by STMicroelectronics, with an average error of about 0.2% , confirming the effectiveness of the proposed system.File | Dimensione | Formato | |
---|---|---|---|
Intelligent_Traction_Inverter_in_Next_Generation_Electric_Vehicles_The_Health_Monitoring_of_Silicon-Carbide_Power_Modules.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
4.7 MB
Formato
Adobe PDF
|
4.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.