Using the Planck Low Frequency Instrument (LFI) and WMAP data within the global Bayesian BEYONDPLANCK framework, we constrained the polarized foreground emission between 30 and 70 GHz. We combined, for the first time, full-resolution Planck LFI time-ordered data with low-resolution WMAP sky maps at 33, 40, and 61 GHz. The spectral parameters were fit with a likelihood defined at the native resolution of each frequency channel. This analysis represents the first implementation of true multi-resolution component separation applied to CMB observations for both amplitude and spectral energy distribution (SED) parameters. For the synchrotron emission, we approximated the SED as a power-law in frequency and we find that the low signal-to-noise ratio of the current data strongly limits the number of free parameters that can be robustly constrained. We partitioned the sky into four large disjoint regions (High Latitude; Galactic Spur; Galactic Plane; and Galactic Center), each associated with its own power-law index. We find that the High Latitude region is prior-dominated, while the Galactic Center region is contaminated by residual instrumental systematics. The two remaining regions appear to be signal-dominated, and for these we derive spectral indices of βsSpur = −3.17 ± 0.06 and βsPlane = −3.03 ± 0.07, which is in good agreement with previous results. For the thermal dust emission, we assumed a modified blackbody model and we fit a single power-law index across the full sky. We find βd = 1.64 ± 0.03, which is slightly steeper than the value reported in Planck HFI data, but still statistically consistent at the 2σ confidence level.

BeyondPlanck XIV. Polarized foreground emission between 30 and 70 GHz / T.L. Svalheim, K.J. Andersen, R. Aurlien, R. Banerji, M. Bersanelli, S. Bertocco, M. Brilenkov, M. Carbone, L.P.L. Colombo, H.K. Eriksen, M.K. Foss, C. Franceschet, U. Fuskeland, S. Galeotta, M. Galloway, S. Gerakakis, E. Gjerl??w, B. Hensley, D. Herman, M. Iacobellis, M. Ieronymaki, H.T. Ihle, J.B. Jewell, A. Karakci, E. Keih??nen, R. Keskitalo, G. Maggio, D. Maino, M. Maris, S. Paradiso, B. Partridge, M. Reinecke, A.-. Suur-Uski, D. Tavagnacco, H. Thommesen, D.J. Watts, I.K. Wehus, A. Zacchei. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 675:(2023 Jul), pp. A14.1-A14.18. [10.1051/0004-6361/202243160]

BeyondPlanck XIV. Polarized foreground emission between 30 and 70 GHz

M. Bersanelli;L.P.L. Colombo;C. Franceschet;D. Maino;S. Paradiso;
2023

Abstract

Using the Planck Low Frequency Instrument (LFI) and WMAP data within the global Bayesian BEYONDPLANCK framework, we constrained the polarized foreground emission between 30 and 70 GHz. We combined, for the first time, full-resolution Planck LFI time-ordered data with low-resolution WMAP sky maps at 33, 40, and 61 GHz. The spectral parameters were fit with a likelihood defined at the native resolution of each frequency channel. This analysis represents the first implementation of true multi-resolution component separation applied to CMB observations for both amplitude and spectral energy distribution (SED) parameters. For the synchrotron emission, we approximated the SED as a power-law in frequency and we find that the low signal-to-noise ratio of the current data strongly limits the number of free parameters that can be robustly constrained. We partitioned the sky into four large disjoint regions (High Latitude; Galactic Spur; Galactic Plane; and Galactic Center), each associated with its own power-law index. We find that the High Latitude region is prior-dominated, while the Galactic Center region is contaminated by residual instrumental systematics. The two remaining regions appear to be signal-dominated, and for these we derive spectral indices of βsSpur = −3.17 ± 0.06 and βsPlane = −3.03 ± 0.07, which is in good agreement with previous results. For the thermal dust emission, we assumed a modified blackbody model and we fit a single power-law index across the full sky. We find βd = 1.64 ± 0.03, which is slightly steeper than the value reported in Planck HFI data, but still statistically consistent at the 2σ confidence level.
cosmic background radiation;
Settore FIS/05 - Astronomia e Astrofisica
   Cosmoglobe -- mapping the universe from the Milky Way to the Big Bang
   Cosmoglobe
   European Commission
   Horizon 2020 Framework Programme
   819478

   Beyond Planck -- delivering state-of-the-art observations of the microwave sky from 30 to 70 GHz for the next decade
   BeyondPlanck
   European Commission
   Horizon 2020 Framework Programme
   776282

   Time-domain Gibbs sampling: From bits to inflationary gravitational waves
   Bits2Cosmology
   European Commission
   Horizon 2020 Framework Programme
   772253
lug-2023
28-giu-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
aa43160-22.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 24.7 MB
Formato Adobe PDF
24.7 MB Adobe PDF Visualizza/Apri
aa43160-22_compressed.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 6.77 MB
Formato Adobe PDF
6.77 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/981809
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact