We present the intensity foreground algorithms and model employed within the BEYONDPLANCK analysis framework. The BEYONDPLANCK analysis is aimed at integrating component separation and instrumental parameter sampling within a global framework, leading to complete end-to-end error propagation in the Planck Low Frequency Instrument (LFI) data analysis. Given the scope of the BEYONDPLANCK analysis, a limited set of data is included in the component separation process, leading to foreground parameter degeneracies. In order to properly constrain the Galactic foreground parameters, we improve upon the previous Commander component separation implementation by adding a suite of algorithmic techniques. These algorithms are designed to improve the stability and computational efficiency for weakly constrained posterior distributions. These are: (1) joint foreground spectral parameter and amplitude sampling, building on ideas from MIRAMARE; (2) component-based monopole determination; (3) joint spectral parameter and monopole sampling; and (4) application of informative spatial priors for component amplitude maps. We find that the only spectral parameter with a significant signal-to-noise ratio using the current BEYONDPLANCK data set is the peak frequency of the anomalous microwave emission component, for which we find νp = 25.3 ± 0.5 GHz; all others must be constrained through external priors. Future works will be aimed at integrating many more data sets into this analysis, both map and time-ordered based, thereby gradually eliminating the currently observed degeneracies in a controlled manner with respect to both instrumental systematic effects and astrophysical degeneracies. When this happens, the simple LFI-oriented data model employed in the current work will need to be generalized to account for both a richer astrophysical model and additional instrumental effects. This work will be organized within the Open Science-based COSMOGLOBE community effort.

BeyondPlanck XIII. Intensity foreground sampling, degeneracies, and priors / K.J. Andersen, D. Herman, R. Aurlien, R. Banerji, A. Basyrov, M. Bersanelli, S. Bertocco, M. Brilenkov, M. Carbone, L.P.L. Colombo, H.K. Eriksen, J.R. Eskilt, M.K. Foss, C. Franceschet, U. Fuskeland, S. Galeotta, M. Galloway, S. Gerakakis, E. Gjerl??w, B. Hensley, M. Iacobellis, M. Ieronymaki, H.T. Ihle, J.B. Jewell, A. Karakci, E. Keih??nen, R. Keskitalo, J.G.S. Lunde, G. Maggio, D. Maino, M. Maris, A. Mennella, S. Paradiso, B. Partridge, M. Reinecke, M. San, N.-. Stutzer, A.-. Suur-Uski, T.L. Svalheim, D. Tavagnacco, H. Thommesen, D.J. Watts, I.K. Wehus, A. Zacchei. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 675:(2023 Jul), pp. A13.1-A13.27. [10.1051/0004-6361/202243186]

BeyondPlanck XIII. Intensity foreground sampling, degeneracies, and priors

M. Bersanelli;L.P.L. Colombo;C. Franceschet;D. Maino;A. Mennella;S. Paradiso;
2023

Abstract

We present the intensity foreground algorithms and model employed within the BEYONDPLANCK analysis framework. The BEYONDPLANCK analysis is aimed at integrating component separation and instrumental parameter sampling within a global framework, leading to complete end-to-end error propagation in the Planck Low Frequency Instrument (LFI) data analysis. Given the scope of the BEYONDPLANCK analysis, a limited set of data is included in the component separation process, leading to foreground parameter degeneracies. In order to properly constrain the Galactic foreground parameters, we improve upon the previous Commander component separation implementation by adding a suite of algorithmic techniques. These algorithms are designed to improve the stability and computational efficiency for weakly constrained posterior distributions. These are: (1) joint foreground spectral parameter and amplitude sampling, building on ideas from MIRAMARE; (2) component-based monopole determination; (3) joint spectral parameter and monopole sampling; and (4) application of informative spatial priors for component amplitude maps. We find that the only spectral parameter with a significant signal-to-noise ratio using the current BEYONDPLANCK data set is the peak frequency of the anomalous microwave emission component, for which we find νp = 25.3 ± 0.5 GHz; all others must be constrained through external priors. Future works will be aimed at integrating many more data sets into this analysis, both map and time-ordered based, thereby gradually eliminating the currently observed degeneracies in a controlled manner with respect to both instrumental systematic effects and astrophysical degeneracies. When this happens, the simple LFI-oriented data model employed in the current work will need to be generalized to account for both a richer astrophysical model and additional instrumental effects. This work will be organized within the Open Science-based COSMOGLOBE community effort.
cosmic background radiation; cosmology: observations; cosmology: miscellaneous;
Settore FIS/05 - Astronomia e Astrofisica
   Beyond Planck -- delivering state-of-the-art observations of the microwave sky from 30 to 70 GHz for the next decade
   BeyondPlanck
   European Commission
   Horizon 2020 Framework Programme
   776282

   Cosmoglobe -- mapping the universe from the Milky Way to the Big Bang
   Cosmoglobe
   European Commission
   Horizon 2020 Framework Programme
   819478

   Time-domain Gibbs sampling: From bits to inflationary gravitational waves
   Bits2Cosmology
   European Commission
   Horizon 2020 Framework Programme
   772253
lug-2023
28-giu-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
aa43186-22_compressed.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/981790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact