BackgroundTo evaluate the benefits of SARS-CoV-2 vaccination in cancer patients it is relevant to understand the adaptive immune response elicited after vaccination. Patients affected by hematologic malignancies are frequently immune-compromised and show a decreased seroconversion rate compared to other cancer patients or controls. Therefore, vaccine-induced cellular immune responses in these patients might have an important protective role and need a detailed evaluation. MethodsCertain T cell subtypes (CD4, CD8, Tfh, gamma delta T), including cell functionality as indicated by cytokine secretion (IFN, TNF) and expression of activation markers (CD69, CD154) were assessed via multi-parameter flow cytometry in hematologic malignancy patients (N=12) and healthy controls (N=12) after a second SARS-CoV-2 vaccine dose. The PBMC of post-vaccination samples were stimulated with a spike-peptide pool (S-Peptides) of SARS-CoV-2, with CD3/CD28, with a pool of peptides from the cytomegalovirus, Epstein-Barr virus and influenza A virus (CEF-Peptides) or left unstimulated. Furthermore, the concentration of spike-specific antibodies has been analyzed in patients. ResultsOur results indicate that hematologic malignancy patients developed a robust cellular immune response to SARS-CoV-2 vaccination comparable to that of healthy controls, and for certain T cell subtypes even higher. The most reactive T cells to SARS-CoV-2 spike peptides belonged to the CD4 and Tfh cell compartment, being median (IQR), 3.39 (1.41-5.92) and 2.12 (0.55-4.14) as a percentage of IFN- and TNF-producing Tfh cells in patients. In this regard, the immunomodulatory treatment of patients before the vaccination period seems important as it was strongly associated with a higher percentage of activated CD4 and Tfh cells. SARS-CoV-2- and CEF-specific T cell responses significantly correlated with each other. Compared to lymphoma patients, myeloma patients had an increased percentage of SARS-CoV-2-specific Tfh cells. T-SNE analysis revealed higher frequencies of gamma delta T cells in patients compared to controls, especially in myeloma patients. In general, after vaccination, SARS-CoV-2-specific T cells were also detectable in patients without seroconversion. ConclusionHematologic malignancy patients are capable of developing a SARS-CoV-2-specific CD4 and Tfh cellular immune response after vaccination, and certain immunomodulatory therapies in the period before vaccination might increase the antigen-specific immune response. A proper response to recall antigens (e.g., CEF-Peptides) reflects immune cellular functionality and might be predictive for generating a newly induced antigen-specific immune response as is expected after SARS-CoV-2 vaccination.

Characterization of post-vaccination SARS-CoV-2 T cell subtypes in patients with different hematologic malignancies and treatments / R. Pfannes, A. Pierzchalski, A. Maddalon, A. Simion, C.C. Zouboulis, G. Behre, A.C. Zenclussen, S. Westphal, S. Fest, G. Herberth. - In: FRONTIERS IN IMMUNOLOGY. - ISSN 1664-3224. - 14:(2023), pp. 1087996.1-1087996.16. [10.3389/fimmu.2023.1087996]

Characterization of post-vaccination SARS-CoV-2 T cell subtypes in patients with different hematologic malignancies and treatments

A. Maddalon;
2023

Abstract

BackgroundTo evaluate the benefits of SARS-CoV-2 vaccination in cancer patients it is relevant to understand the adaptive immune response elicited after vaccination. Patients affected by hematologic malignancies are frequently immune-compromised and show a decreased seroconversion rate compared to other cancer patients or controls. Therefore, vaccine-induced cellular immune responses in these patients might have an important protective role and need a detailed evaluation. MethodsCertain T cell subtypes (CD4, CD8, Tfh, gamma delta T), including cell functionality as indicated by cytokine secretion (IFN, TNF) and expression of activation markers (CD69, CD154) were assessed via multi-parameter flow cytometry in hematologic malignancy patients (N=12) and healthy controls (N=12) after a second SARS-CoV-2 vaccine dose. The PBMC of post-vaccination samples were stimulated with a spike-peptide pool (S-Peptides) of SARS-CoV-2, with CD3/CD28, with a pool of peptides from the cytomegalovirus, Epstein-Barr virus and influenza A virus (CEF-Peptides) or left unstimulated. Furthermore, the concentration of spike-specific antibodies has been analyzed in patients. ResultsOur results indicate that hematologic malignancy patients developed a robust cellular immune response to SARS-CoV-2 vaccination comparable to that of healthy controls, and for certain T cell subtypes even higher. The most reactive T cells to SARS-CoV-2 spike peptides belonged to the CD4 and Tfh cell compartment, being median (IQR), 3.39 (1.41-5.92) and 2.12 (0.55-4.14) as a percentage of IFN- and TNF-producing Tfh cells in patients. In this regard, the immunomodulatory treatment of patients before the vaccination period seems important as it was strongly associated with a higher percentage of activated CD4 and Tfh cells. SARS-CoV-2- and CEF-specific T cell responses significantly correlated with each other. Compared to lymphoma patients, myeloma patients had an increased percentage of SARS-CoV-2-specific Tfh cells. T-SNE analysis revealed higher frequencies of gamma delta T cells in patients compared to controls, especially in myeloma patients. In general, after vaccination, SARS-CoV-2-specific T cells were also detectable in patients without seroconversion. ConclusionHematologic malignancy patients are capable of developing a SARS-CoV-2-specific CD4 and Tfh cellular immune response after vaccination, and certain immunomodulatory therapies in the period before vaccination might increase the antigen-specific immune response. A proper response to recall antigens (e.g., CEF-Peptides) reflects immune cellular functionality and might be predictive for generating a newly induced antigen-specific immune response as is expected after SARS-CoV-2 vaccination.
CD4; SARS-CoV-2 T cell subtypes; SARS-CoV-2 vaccine; Tfh cells; antigen-specific T cells; hematologic malignancies; lymphoma; myeloma
Settore BIO/14 - Farmacologia
2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
fimmu-14-1087996.pdf

accesso aperto

Descrizione: Original Research
Tipologia: Publisher's version/PDF
Dimensione 7.86 MB
Formato Adobe PDF
7.86 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/978369
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact