Empirical studies on the impact of weather and policy interventions on Covid-19 infections have dedicated little attention to the mediation role of social activity. In this study, we combine mobile locations, weather, and COVID-19 data in a two-way fixed effects mediation model to estimate the impact of weather and policy interventions on the COVID-19 infection rate in the US before the availability of vaccines, disentangling their direct impact from the part of the effect that is mediated by the endogenous response of social activity. We show that, while temperature reduces viral infectiousness, it also increases the amount of time individuals spend out of home, which instead favours the spread of the virus. This second channel substantially attenuates the beneficial effect of temperature in curbing the spread of the virus, offsetting one-third of the potential seasonal fluctuations in the reproduction rate. The mediation role of social activity is particularly pronounced when viral incidence is low, and completely offsets the beneficial effect of temperature. Despite being significant predictors of social activity, wind speed and precipitation do not induce sufficient variation to affect infections. Our estimates also suggest that school closures and lockdowns are effective in reducing infections. We employ our estimates to quantify the seasonal variation in the reproduction rate stemming from weather seasonality in the US.
The complex interplay between weather, social activity, and COVID-19 in the US / S. Ferro, C. Serra. - In: SSM - POPULATION HEALTH. - ISSN 2352-8273. - 23:(2023 May 28), pp. 101431.1-101431.8. [10.1016/j.ssmph.2023.101431]
The complex interplay between weather, social activity, and COVID-19 in the US
S. Ferro
Primo
;
2023
Abstract
Empirical studies on the impact of weather and policy interventions on Covid-19 infections have dedicated little attention to the mediation role of social activity. In this study, we combine mobile locations, weather, and COVID-19 data in a two-way fixed effects mediation model to estimate the impact of weather and policy interventions on the COVID-19 infection rate in the US before the availability of vaccines, disentangling their direct impact from the part of the effect that is mediated by the endogenous response of social activity. We show that, while temperature reduces viral infectiousness, it also increases the amount of time individuals spend out of home, which instead favours the spread of the virus. This second channel substantially attenuates the beneficial effect of temperature in curbing the spread of the virus, offsetting one-third of the potential seasonal fluctuations in the reproduction rate. The mediation role of social activity is particularly pronounced when viral incidence is low, and completely offsets the beneficial effect of temperature. Despite being significant predictors of social activity, wind speed and precipitation do not induce sufficient variation to affect infections. Our estimates also suggest that school closures and lockdowns are effective in reducing infections. We employ our estimates to quantify the seasonal variation in the reproduction rate stemming from weather seasonality in the US.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2352827323000964-main.pdf
accesso aperto
Descrizione: Article
Tipologia:
Publisher's version/PDF
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.