Traditionally, cyber-attack detection relies on reactive, assistive techniques, where pattern-matching algorithms help human experts to scan system logs and network traffic for known virus or malware signatures. Recent research has introduced effective Machine Learning (ML) models for cyber-attack detection, promising to automate the task of detecting, tracking and blocking malware and intruders. Much less effort has been devoted to cyber-attack prediction, especially beyond the short-term time scale of hours and days. Approaches that can forecast attacks likely to happen in the longer term are desirable, as this gives defenders more time to develop and share defensive actions and tools. Today, long-term predictions of attack waves are mostly based on the subjective perceptiveness of experienced human experts, which can be impaired by the scarcity of cyber-security expertise. This paper introduces a novel ML-based approach that leverages unstructured big data and logs to forecast the trend of cyber-attacks at a large scale, years in advance. To this end, we put forward a framework that utilises a monthly dataset of major cyber incidents in 36 countries over the past 11 years, with new features extracted from three major categories of big data sources, namely the scientific research literature, news, blogs, and tweets. Our framework not only identifies future attack trends in an automated fashion, but also generates a threat cycle that drills down into five key phases that constitute the life cycle of all 42 known cyber threats.

A holistic and proactive approach to forecasting cyber threats / Z. Almahmoud, P.D. Yoo, O. Alhussein, I. Farhat, E. Damiani. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 13:1(2023 May 17), pp. 8049.1-8049.15. [10.1038/s41598-023-35198-1]

A holistic and proactive approach to forecasting cyber threats

E. Damiani
Ultimo
2023

Abstract

Traditionally, cyber-attack detection relies on reactive, assistive techniques, where pattern-matching algorithms help human experts to scan system logs and network traffic for known virus or malware signatures. Recent research has introduced effective Machine Learning (ML) models for cyber-attack detection, promising to automate the task of detecting, tracking and blocking malware and intruders. Much less effort has been devoted to cyber-attack prediction, especially beyond the short-term time scale of hours and days. Approaches that can forecast attacks likely to happen in the longer term are desirable, as this gives defenders more time to develop and share defensive actions and tools. Today, long-term predictions of attack waves are mostly based on the subjective perceptiveness of experienced human experts, which can be impaired by the scarcity of cyber-security expertise. This paper introduces a novel ML-based approach that leverages unstructured big data and logs to forecast the trend of cyber-attacks at a large scale, years in advance. To this end, we put forward a framework that utilises a monthly dataset of major cyber incidents in 36 countries over the past 11 years, with new features extracted from three major categories of big data sources, namely the scientific research literature, news, blogs, and tweets. Our framework not only identifies future attack trends in an automated fashion, but also generates a threat cycle that drills down into five key phases that constitute the life cycle of all 42 known cyber threats.
Settore INF/01 - Informatica
17-mag-2023
https://www.nature.com/articles/s41598-023-35198-1
Article (author)
File in questo prodotto:
File Dimensione Formato  
s41598-023-35198-1.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/971689
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact