Nonlinear markers of coupling strength are often utilized to typify cardiorespiratory and cerebrovascular regulations. The computation of these indices requires techniques describing nonlinear interactions between respiration (R) and heart period (HP) and between mean arterial pressure (MAP) and mean cerebral blood velocity (MCBv). We compared two model-free methods for the assessment of dynamic HP–R and MCBv–MAP interactions, namely the cross-sample entropy (CSampEn) and k-nearest-neighbor cross-unpredictability (KNNCUP). Comparison was carried out first over simulations generated by linear and nonlinear unidirectional causal, bidirectional linear causal, and lag-zero linear noncausal models, and then over experimental data acquired from 19 subjects at supine rest during spontaneous breathing and controlled respiration at 10, 15, and 20 breaths·minute−1 as well as from 13 subjects at supine rest and during 60◦ head-up tilt. Linear markers were computed for comparison. We found that: (i) over simulations, CSampEn and KNNCUP exhibit different abilities in evaluating coupling strength; (ii) KNNCUP is more reliable than CSampEn when interactions occur according to a causal structure, while performances are similar in noncausal models; (iii) in healthy subjects, KNNCUP is more powerful in characterizing cardiorespiratory and cerebrovascular variability interactions than CSampEn and linear markers. We recommend KNNCUP for quantifying cardiorespiratory and cerebrovascular coupling.

On the different ability of cross-sample entropy and k-nearest-neighbor cross-unpredictability in assessing dynamic cardiorespiratory and cerebrovascular interactions / A. Porta, V. Bari, F. Gelpi, B. Cairo, B. De Maria, D. Tonon, G. Rossato, L. Faes. - In: ENTROPY. - ISSN 1099-4300. - 25:4(2023), pp. 599.1-599.16. [10.3390/e25040599]

On the different ability of cross-sample entropy and k-nearest-neighbor cross-unpredictability in assessing dynamic cardiorespiratory and cerebrovascular interactions

A. Porta
Primo
;
V. Bari
Secondo
;
F. Gelpi;B. Cairo;
2023

Abstract

Nonlinear markers of coupling strength are often utilized to typify cardiorespiratory and cerebrovascular regulations. The computation of these indices requires techniques describing nonlinear interactions between respiration (R) and heart period (HP) and between mean arterial pressure (MAP) and mean cerebral blood velocity (MCBv). We compared two model-free methods for the assessment of dynamic HP–R and MCBv–MAP interactions, namely the cross-sample entropy (CSampEn) and k-nearest-neighbor cross-unpredictability (KNNCUP). Comparison was carried out first over simulations generated by linear and nonlinear unidirectional causal, bidirectional linear causal, and lag-zero linear noncausal models, and then over experimental data acquired from 19 subjects at supine rest during spontaneous breathing and controlled respiration at 10, 15, and 20 breaths·minute−1 as well as from 13 subjects at supine rest and during 60◦ head-up tilt. Linear markers were computed for comparison. We found that: (i) over simulations, CSampEn and KNNCUP exhibit different abilities in evaluating coupling strength; (ii) KNNCUP is more reliable than CSampEn when interactions occur according to a causal structure, while performances are similar in noncausal models; (iii) in healthy subjects, KNNCUP is more powerful in characterizing cardiorespiratory and cerebrovascular variability interactions than CSampEn and linear markers. We recommend KNNCUP for quantifying cardiorespiratory and cerebrovascular coupling.
model-free time series analysis; causality; coupling strength; cardiac control; cerebral autoregulation; heart rate variability; blood flow; arterial pressure; autonomic nervous system; controlled breathing; head-up tilt
Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
Porta_E_2023.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 2.96 MB
Formato Adobe PDF
2.96 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/970489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact