In this paper, we study the Hilbert scheme of non degenerate locally Cohen- Macaulay projective curves with general hyperplane section spanning a linear space of dimension 2 and minimal Hilbert function. The main result is that those curves are almost always the general element of a generically smooth component H n,d,g of the corresponding Hilbert scheme. Moreover, we show that the curves with maximal cohomology almost always correspond to smooth points of H n,d,g.
Non degenerate projective curves with very degenerate hyperplane section / R. Notari, I. Ojeda, M.L. Spreafico. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 251:2(2005), pp. 443-473. [10.1007/s00209-005-0821-x]
Non degenerate projective curves with very degenerate hyperplane section
M.L. SpreaficoUltimo
2005
Abstract
In this paper, we study the Hilbert scheme of non degenerate locally Cohen- Macaulay projective curves with general hyperplane section spanning a linear space of dimension 2 and minimal Hilbert function. The main result is that those curves are almost always the general element of a generically smooth component H n,d,g of the corresponding Hilbert scheme. Moreover, we show that the curves with maximal cohomology almost always correspond to smooth points of H n,d,g.| File | Dimensione | Formato | |
|---|---|---|---|
|
non-degenerate-curves.pdf
accesso riservato
Descrizione: Article
Tipologia:
Publisher's version/PDF
Dimensione
301.42 kB
Formato
Adobe PDF
|
301.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




