: Lab-on-Chip (LoC) devices for performing real-time PCR are advantageous compared to standard equipment since these systems allow to conduct in-field quick analysis. The development of LoCs, where the components for performing the nucleic acid amplification are all integrated, can be an issue. In this work, we present a LoC-PCR device where thermalization, temperature control and detection elements are all integrated on a single glass substrate named System-on-Glass (SoG) obtained using metal thin-film deposition. By using a microwell plate optically coupled with the SoG, real-time reverse transcriptase PCR of RNA extracted from both a plant and human virus has been carried out in the developed LoC-PCR device. The limit of detection and time of analysis for the detection of the two viruses by using the LoC-PCR were compared with those achieved by standard equipment. The results showed that the two systems can detect the same concentration of RNA; however, the LoC-PCR performs the analysis in half of the time compared to the standard thermocycler, with the advantage of the portability, leading to a point-of-care device for several diagnostic applications.

Biomolecular Monitoring Tool Based on Lab-on-Chip for Virus Detection / F. Costantini, N. Lovecchio, M. Nandimandalam, A. Manglli, F. Faggioli, M. Biasin, C. Manetti, P.F. Roversi, A. Nascetti, G. de Cesare, D. Caputo. - In: BIOSENSORS. - ISSN 2079-6374. - 13:5(2023), pp. 544.1-544.14. [10.3390/bios13050544]

Biomolecular Monitoring Tool Based on Lab-on-Chip for Virus Detection

M. Biasin;
2023

Abstract

: Lab-on-Chip (LoC) devices for performing real-time PCR are advantageous compared to standard equipment since these systems allow to conduct in-field quick analysis. The development of LoCs, where the components for performing the nucleic acid amplification are all integrated, can be an issue. In this work, we present a LoC-PCR device where thermalization, temperature control and detection elements are all integrated on a single glass substrate named System-on-Glass (SoG) obtained using metal thin-film deposition. By using a microwell plate optically coupled with the SoG, real-time reverse transcriptase PCR of RNA extracted from both a plant and human virus has been carried out in the developed LoC-PCR device. The limit of detection and time of analysis for the detection of the two viruses by using the LoC-PCR were compared with those achieved by standard equipment. The results showed that the two systems can detect the same concentration of RNA; however, the LoC-PCR performs the analysis in half of the time compared to the standard thermocycler, with the advantage of the portability, leading to a point-of-care device for several diagnostic applications.
Lab-on-Chip; real-time RT-PCR; System-on-Glass; virus detection
Settore BIO/13 - Biologia Applicata
2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
biosensors-13-00544-v2.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 4.31 MB
Formato Adobe PDF
4.31 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/969960
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact