Precise information about the spatial distribution of hydraulic conductivity (K) in an aquifer is essential for the reliable modeling of groundwater flow and transport processes. In this study, we present results of a new inversion procedure for induced polarization (IP) data that incorporates petrophysical relations between electrical and hydraulic parameters, and therefore allows for the direct computation of K. This novel approach was successfully implemented for the Bolstern aquifer analog by performing synthetic IP experiments with a combined surface and cross-borehole setup. From these data, the distribution of K was retrieved with high accuracy and resolution, showing a similar quality compared to images achieved by hydraulic tomography. To further improve the quantitative estimates of K, we use synthetic pumping test data to inform two novel calibration strategies for the IP inversion results. Both calibrations are especially helpful for correcting a possible bias of the IP inversion, e.g., due to resolution limitations and/or to bias in the underlying petrophysical relations. The simulation of tracer experiments on the retrieved tomograms highlights the accuracy of the inversion results, as well as the significant role of the proposed calibrations.
Imaging hydraulic conductivity in near-surface aquifers by complementing cross-borehole induced polarization with hydraulic experiments / L. Romhild, G. Fiandaca, L. Hu, L. Meyer, P. Bayer. - In: ADVANCES IN WATER RESOURCES. - ISSN 0309-1708. - 170:(2022), pp. 104322.1-104322.17. [10.1016/j.advwatres.2022.104322]
Imaging hydraulic conductivity in near-surface aquifers by complementing cross-borehole induced polarization with hydraulic experiments
G. FiandacaSecondo
;
2022
Abstract
Precise information about the spatial distribution of hydraulic conductivity (K) in an aquifer is essential for the reliable modeling of groundwater flow and transport processes. In this study, we present results of a new inversion procedure for induced polarization (IP) data that incorporates petrophysical relations between electrical and hydraulic parameters, and therefore allows for the direct computation of K. This novel approach was successfully implemented for the Bolstern aquifer analog by performing synthetic IP experiments with a combined surface and cross-borehole setup. From these data, the distribution of K was retrieved with high accuracy and resolution, showing a similar quality compared to images achieved by hydraulic tomography. To further improve the quantitative estimates of K, we use synthetic pumping test data to inform two novel calibration strategies for the IP inversion results. Both calibrations are especially helpful for correcting a possible bias of the IP inversion, e.g., due to resolution limitations and/or to bias in the underlying petrophysical relations. The simulation of tracer experiments on the retrieved tomograms highlights the accuracy of the inversion results, as well as the significant role of the proposed calibrations.File | Dimensione | Formato | |
---|---|---|---|
ROMHILD2022.pdf
accesso riservato
Descrizione: Article
Tipologia:
Publisher's version/PDF
Dimensione
5.83 MB
Formato
Adobe PDF
|
5.83 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.