Sufficient conditions for a Lorentzian generalized quasi-Einstein manifold (M, g, f, mu) to be a generalized Robertson-Walker spacetime with Einstein fibers are derived. The Ricci tensor in this case gains the perfect fluid form. Likewise, it is proven that a (lambda, n + m)-Einstein manifold (M, g, w) having harmonic Weyl tensor, (del(j)w) (del(m)w)C-jklm = 0 and del(l)w del(l)w < 0 reduces to a perfect fluid generalized Robertson-Walker spacetime with Einstein fibers. Finally, (M, g, w) reduces to a perfect fluid manifold if phi = m del(ln w) is a phi(Ric)-vector field on M and to an Einstein manifold if psi = del w is a phi(Ric)-vector field on M. Some consequences of these results are considered.

A Note on Generalized Quasi-Einstein and (lambda, n+m)-Einstein Manifolds with Harmonic Conformal Tensor / S. Shenawy, C.A. Mantica, L.G. Molinari, N. Bin Turki. - In: MATHEMATICS. - ISSN 2227-7390. - 10:10(2022 May 18), pp. 1731.1-1731.11. [10.3390/math10101731]

A Note on Generalized Quasi-Einstein and (lambda, n+m)-Einstein Manifolds with Harmonic Conformal Tensor

C.A. Mantica
Secondo
;
L.G. Molinari
Penultimo
;
2022

Abstract

Sufficient conditions for a Lorentzian generalized quasi-Einstein manifold (M, g, f, mu) to be a generalized Robertson-Walker spacetime with Einstein fibers are derived. The Ricci tensor in this case gains the perfect fluid form. Likewise, it is proven that a (lambda, n + m)-Einstein manifold (M, g, w) having harmonic Weyl tensor, (del(j)w) (del(m)w)C-jklm = 0 and del(l)w del(l)w < 0 reduces to a perfect fluid generalized Robertson-Walker spacetime with Einstein fibers. Finally, (M, g, w) reduces to a perfect fluid manifold if phi = m del(ln w) is a phi(Ric)-vector field on M and to an Einstein manifold if psi = del w is a phi(Ric)-vector field on M. Some consequences of these results are considered.
(lambda, n + m)-Einstein manifolds; generalized quasi-Einstein manifold; perfect fluid; torse-forming vector fields
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
18-mag-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
27) Turki_Shenawy_Mantica_Molinari.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 276.05 kB
Formato Adobe PDF
276.05 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/967677
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact