Radiomics and artificial intelligence (AI) may increase the differentiation of benign from malignant kidney lesions, differentiation of angiomyolipoma (AML) from renal cell carcinoma (RCC), differentiation of oncocytoma from RCC, differentiation of different subtypes of RCC, to predict Fuhrman grade, to predict gene mutation through molecular biomarkers and to predict treatment response in metastatic RCC undergoing immunotherapy. Neural networks analyze imaging data. Statistical, geometrical, textural features derived are giving quantitative data of contour, internal heterogeneity and gray zone features of lesions. A comprehensive literature review was performed, until July 2022. Studies investigating the diagnostic value of radiomics in differentiation of renal lesions, grade prediction, gene alterations, molecular biomarkers and ongoing clinical trials have been analyzed. The application of AI and radiomics could lead to improved sensitivity, specificity, accuracy in detecting and differentiating between renal lesions. Standardization of scanner protocols will improve preoperative differentiation between benign, low-risk cancers and clinically significant renal cancers and holds the premises to enhance the diagnostic ability of imaging tools to characterize renal lesions.

Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review / M. Ferro, F. Crocetto, B. Barone, F. Del Giudice, M. Maggi, G. Lucarelli, G.M. Busetto, R. Autorino, M. Marchioni, F. Cantiello, F. Crocerossa, S. Luzzago, M. Piccinelli, F.A. Mistretta, M. Tozzi, L. Schips, U.G. Falagario, A. Veccia, M.D. Vartolomei, G. Musi, O. de Cobelli, E. Montanari, O.S. Tătaru. - In: THERAPEUTIC ADVANCES IN UROLOGY. - ISSN 1756-2872. - 15:(2023), pp. 17562872231164803.1-17562872231164803.26. [10.1177/17562872231164803]

Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review

S. Luzzago;M. Piccinelli;F.A. Mistretta;M. Tozzi;G. Musi;O. de Cobelli;E. Montanari
Penultimo
;
2023

Abstract

Radiomics and artificial intelligence (AI) may increase the differentiation of benign from malignant kidney lesions, differentiation of angiomyolipoma (AML) from renal cell carcinoma (RCC), differentiation of oncocytoma from RCC, differentiation of different subtypes of RCC, to predict Fuhrman grade, to predict gene mutation through molecular biomarkers and to predict treatment response in metastatic RCC undergoing immunotherapy. Neural networks analyze imaging data. Statistical, geometrical, textural features derived are giving quantitative data of contour, internal heterogeneity and gray zone features of lesions. A comprehensive literature review was performed, until July 2022. Studies investigating the diagnostic value of radiomics in differentiation of renal lesions, grade prediction, gene alterations, molecular biomarkers and ongoing clinical trials have been analyzed. The application of AI and radiomics could lead to improved sensitivity, specificity, accuracy in detecting and differentiating between renal lesions. Standardization of scanner protocols will improve preoperative differentiation between benign, low-risk cancers and clinically significant renal cancers and holds the premises to enhance the diagnostic ability of imaging tools to characterize renal lesions.
artificial intelligence; imaging; machine learning; radiomics; renal cancer;
Settore MED/24 - Urologia
2023
17-apr-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
17562872231164803.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 488.12 kB
Formato Adobe PDF
488.12 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/967449
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact