The detection of Acute Lymphoblastic (or Lymphocytic) Leukemia (ALL) is being increasingly performed using Deep Learning models (DL) that analyze each blood sample to detect the presence of lymphoblasts, possible indicators of the disease. However, current databases either contain too large images or images already segmented. In this paper, we introduce ALL-IDB Patches, a novel approach for processing Whole Slide Images (WSI) of ALL to take advantage of all the information available for ALL detection, by generating a larger number of samples, making the images usable by current DL models, and without any pre-performed segmentation. To evaluate the recognition accuracy, we consider the OrthoALLNet, obtained by imposing an additional orthogonality constraint on the filters learned by the CNN, with results confirming the validity of the approach.

ALL-IDB Patches: Whole slide imaging for Acute Lymphoblastic Leukemia detection using Deep Learning / A. Genovese, V. Piuri, F. Scotti - In: 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)[s.l] : IEEE, 2023 Jun 04. - ISBN 979-8-3503-0261-5. - pp. 1-5 (( convegno International Conference on Acoustics, Speech, and Signal Processing tenutosi a Rhodes Island nel 2023 [10.1109/ICASSPW59220.2023.10193429].

ALL-IDB Patches: Whole slide imaging for Acute Lymphoblastic Leukemia detection using Deep Learning

A. Genovese
Primo
;
V. Piuri
Secondo
;
F. Scotti
Ultimo
2023

Abstract

The detection of Acute Lymphoblastic (or Lymphocytic) Leukemia (ALL) is being increasingly performed using Deep Learning models (DL) that analyze each blood sample to detect the presence of lymphoblasts, possible indicators of the disease. However, current databases either contain too large images or images already segmented. In this paper, we introduce ALL-IDB Patches, a novel approach for processing Whole Slide Images (WSI) of ALL to take advantage of all the information available for ALL detection, by generating a larger number of samples, making the images usable by current DL models, and without any pre-performed segmentation. To evaluate the recognition accuracy, we consider the OrthoALLNet, obtained by imposing an additional orthogonality constraint on the filters learned by the CNN, with results confirming the validity of the approach.
Deep Learning; CNN; ALL; XAI
Settore INF/01 - Informatica
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
   Edge AI Technologies for Optimised Performance Embedded Processing (EdgeAI)
   EdgeAI
   MINISTERO DELLO SVILUPPO ECONOMICO
   101097300

   SEcurity and RIghts in the CyberSpace (SERICS)
   SERICS
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   codice identificativo PE00000014
4-giu-2023
Institute of Electrical and Electronics Engineers (IEEE)
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
aimia23.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF Visualizza/Apri
ALL-IDB_Patches_Whole_Slide_Imaging_For_Acute_Lymphoblastic_Leukemia_Detection_Using_Deep_Learning.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/966277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact