In this chapter we review recent results on the conforming virtual element approximation of polyharmonic and eleastodynamics problems. The structure and the content of this review is motivated by three paradigmatic examples of applications: classical and anisotropic Cahn-Hilliard equation and phase field models for brittle fracture, that are briefly discussed in the first part of the chapter. We present and discuss the mathematical details of the conforming virtual element approximation of linear polyharmonic problems, the classical Cahn-Hilliard equation and linear elastodynamics problems.
The Conforming Virtual Element Method for Polyharmonic and Elastodynamics Problems: A Review / P.F. Antonietti, G. Manzini, I. Mazzieri, S. Scacchi, M. Verani (SEMA SIMAI SPRINGER SERIES). - In: The Virtual Element Method and its Applications / [a cura di] P. F. Antonietti, L. Beirão da Veiga, G. Manzini. - [s.l] : Springer, 2022. - ISBN 978-3-030-95318-8. - pp. 411-451 [10.1007/978-3-030-95319-5_10]
The Conforming Virtual Element Method for Polyharmonic and Elastodynamics Problems: A Review
S. ScacchiPenultimo
;M. Verani
Ultimo
2022
Abstract
In this chapter we review recent results on the conforming virtual element approximation of polyharmonic and eleastodynamics problems. The structure and the content of this review is motivated by three paradigmatic examples of applications: classical and anisotropic Cahn-Hilliard equation and phase field models for brittle fracture, that are briefly discussed in the first part of the chapter. We present and discuss the mathematical details of the conforming virtual element approximation of linear polyharmonic problems, the classical Cahn-Hilliard equation and linear elastodynamics problems.File | Dimensione | Formato | |
---|---|---|---|
antoniettiMMSV_2022.pdf
Open Access dal 09/05/2024
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
866.74 kB
Formato
Adobe PDF
|
866.74 kB | Adobe PDF | Visualizza/Apri |
978-3-030-95319-5_10.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.