COVID-19 is a highly contagious disease that was first identified in 2019, and has since taken more than six million lives world wide till date, while also causing considerable economic, social, cultural and political turmoil. As a way to limit its spread, the World Health Organization and medical experts have advised properly wearing face masks, social distancing and hand sanitization, besides vaccination. However, people wear masks sometimes uncovering their mouths and/or noses consciously or unconsciously, thereby lessening the effectiveness of the protection they provide. A system capable of automatic recognition of face mask position could alert and ensure that an individual is wearing a mask properly before entering a crowded public area and putting themselves and others at risk. We first develop and publicly release a dataset of face mask images, which are collected from 391 individuals of different age groups and gender. Then, we study six different architectures of pre-trained deep learning models, and finally propose a model developed by fine tuning the pre-trained state of the art MobileNet model. We evaluate the performance (accuracy, F1-score, and Cohen's Kappa) of this model on the proposed dataset and MaskedFace-Net, a publicly available synthetic dataset created by image editing. Its performance is also compared to other existing methods. The proposed MobileNet is found as the best model providing an accuracy, F1-score, and Cohen's Kappa of 99.23%, 99.22%, and 99.19%, respectively for face mask position recognition. It outperforms the accuracy of the best existing model by about 2%. Finally, an automatic face mask position recognition system has been developed, which can recognize if an individual is wearing a mask correctly or incorrectly. The proposed model performs very well with no drop in recognition accuracy from real images captured by a camera.

Real-time face mask position recognition system based on MobileNet model / M.H. Rahman, M.K.A. Jannat, M.S. Islam, G. Grossi, S. Bursic, M. Aktaruzzaman. - In: SMART HEALTH. - ISSN 2352-6483. - 28:(2023 Jun), pp. 100382.1-100382.12. [10.1016/j.smhl.2023.100382]

Real-time face mask position recognition system based on MobileNet model

G. Grossi;S. Bursic
Penultimo
;
M. Aktaruzzaman
Ultimo
2023

Abstract

COVID-19 is a highly contagious disease that was first identified in 2019, and has since taken more than six million lives world wide till date, while also causing considerable economic, social, cultural and political turmoil. As a way to limit its spread, the World Health Organization and medical experts have advised properly wearing face masks, social distancing and hand sanitization, besides vaccination. However, people wear masks sometimes uncovering their mouths and/or noses consciously or unconsciously, thereby lessening the effectiveness of the protection they provide. A system capable of automatic recognition of face mask position could alert and ensure that an individual is wearing a mask properly before entering a crowded public area and putting themselves and others at risk. We first develop and publicly release a dataset of face mask images, which are collected from 391 individuals of different age groups and gender. Then, we study six different architectures of pre-trained deep learning models, and finally propose a model developed by fine tuning the pre-trained state of the art MobileNet model. We evaluate the performance (accuracy, F1-score, and Cohen's Kappa) of this model on the proposed dataset and MaskedFace-Net, a publicly available synthetic dataset created by image editing. Its performance is also compared to other existing methods. The proposed MobileNet is found as the best model providing an accuracy, F1-score, and Cohen's Kappa of 99.23%, 99.22%, and 99.19%, respectively for face mask position recognition. It outperforms the accuracy of the best existing model by about 2%. Finally, an automatic face mask position recognition system has been developed, which can recognize if an individual is wearing a mask correctly or incorrectly. The proposed model performs very well with no drop in recognition accuracy from real images captured by a camera.
COVID-19; Dataset; Face-mask position recognition; MobileNet; Real-time; Transfer learning;
Settore INF/01 - Informatica
giu-2023
2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
Real-time face mask position recognition system based on MobileNet model.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/961284
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact