Quantum simulations of the hydroxide anion and hydroxyl radical are reported, employing variational quantum algorithms for near-term quantum devices. The energy of each species is calculated along the dissociation curve, to obtain information about the stability of the molecular species being investigated. It is shown that simulations restricted to valence spaces incorrectly predict the hydroxyl radical to be more stable than the hydroxide anion. Inclusion of dynamical electron correlation from nonvalence orbitals is demonstrated, through the integration of the variational quantum eigensolver and quantum subspace expansion methods in the workflow of N-electron valence perturbation theory, and shown to correctly predict the hydroxide anion to be more stable than the hydroxyl radical, provided that basis sets with diffuse orbitals are also employed. Finally, we calculate the electron affinity of the hydroxyl radical using an aug-cc-pVQZ basis on IBM's quantum devices.

N-Electron Valence Perturbation Theory with Reference Wave Functions from Quantum Computing: Application to the Relative Stability of Hydroxide Anion and Hydroxyl Radical / A. Tammaro, D.E. Galli, J.E. Rice, M. Motta. - In: THE JOURNAL OF PHYSICAL CHEMISTRY. A.. - ISSN 1520-5215. - 127:3(2023), pp. 817-827. [10.1021/acs.jpca.2c07653]

N-Electron Valence Perturbation Theory with Reference Wave Functions from Quantum Computing: Application to the Relative Stability of Hydroxide Anion and Hydroxyl Radical

D.E. Galli
Secondo
;
M. Motta
Ultimo
2023

Abstract

Quantum simulations of the hydroxide anion and hydroxyl radical are reported, employing variational quantum algorithms for near-term quantum devices. The energy of each species is calculated along the dissociation curve, to obtain information about the stability of the molecular species being investigated. It is shown that simulations restricted to valence spaces incorrectly predict the hydroxyl radical to be more stable than the hydroxide anion. Inclusion of dynamical electron correlation from nonvalence orbitals is demonstrated, through the integration of the variational quantum eigensolver and quantum subspace expansion methods in the workflow of N-electron valence perturbation theory, and shown to correctly predict the hydroxide anion to be more stable than the hydroxyl radical, provided that basis sets with diffuse orbitals are also employed. Finally, we calculate the electron affinity of the hydroxyl radical using an aug-cc-pVQZ basis on IBM's quantum devices.
Settore FIS/03 - Fisica della Materia
2023
26-gen-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
acs.jpca.2c07653.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 3.01 MB
Formato Adobe PDF
3.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/960056
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact