Self-amplifying RNA (SAM) represents a versatile tool that can be used to develop potent vaccines, potentially able to elicit strong antigen-specific humoral and cellular-mediated immune responses to virtually any infectious disease. To protect the SAM from degradation and achieve efficient delivery, lipid nanoparticles (LNPs), particularly those based on ionizable amino-lipids, are commonly adopted. Herein, we compared commonly available cationic lipids, which have been broadly used in clinical investigations, as an alternative to ionizable lipids. To this end, a SAM vaccine encoding the rabies virus glycoprotein (RVG) was used. The cationic lipids investigated included 3 beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol), dimethyldioctadecylammonium (DDA), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP), 1,2-stearoyl-3-trimethylammonium-propane (DSTAP) and N-(4-carboxybenzyl)-N,N-dimethyl-2,3-bis (oleoyloxy)propan-1-aminium (DOBAQ). Whilst all cationic LNP (cLNP) formulations promoted high association with cells in vitro, those formulations containing the fusogenic lipid 1,2-dioleoyl-sn-3-phosphoethanolamine (DOPE) in combination with DOTAP or DDA were the most efficient at inducing antigen expression. Therefore, DOTAP and DDA formulations were selected for further in vivo studies and were compared to benchmark ionizable LNPs (iLNPs). Biodistribution studies revealed that DDA-cLNPs remained longer at the injection site compared to DOTAP-cLNPs and iLNPs when administered intramuscularly in mice. Both the cLNP formulations and the iLNPs induced strong humoral and cellular-mediated immune responses in mice that were not significantly different at a 1.5 mu g SAM dose. In summary, cLNPs based on DOTAP and DDA are an efficient alternative to iLNPs to deliver SAM vaccines.

Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: The impact of cationic lipid selection / G. Lou, G. Anderluzzi, S.T. Schmidt, S. Woods, S. Gallorini, M. Brazzoli, F. Giusti, I. Ferlenghi, R.N. Johnson, C.W. Roberts, D.T. O'Hagan, B.C. Baudner, Y. Perrie. - In: JOURNAL OF CONTROLLED RELEASE. - ISSN 0168-3659. - 325:(2020 Sep 10), pp. 370-379. [10.1016/j.jconrel.2020.06.027]

Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: The impact of cationic lipid selection

G. Anderluzzi
Secondo
;
2020

Abstract

Self-amplifying RNA (SAM) represents a versatile tool that can be used to develop potent vaccines, potentially able to elicit strong antigen-specific humoral and cellular-mediated immune responses to virtually any infectious disease. To protect the SAM from degradation and achieve efficient delivery, lipid nanoparticles (LNPs), particularly those based on ionizable amino-lipids, are commonly adopted. Herein, we compared commonly available cationic lipids, which have been broadly used in clinical investigations, as an alternative to ionizable lipids. To this end, a SAM vaccine encoding the rabies virus glycoprotein (RVG) was used. The cationic lipids investigated included 3 beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol), dimethyldioctadecylammonium (DDA), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP), 1,2-stearoyl-3-trimethylammonium-propane (DSTAP) and N-(4-carboxybenzyl)-N,N-dimethyl-2,3-bis (oleoyloxy)propan-1-aminium (DOBAQ). Whilst all cationic LNP (cLNP) formulations promoted high association with cells in vitro, those formulations containing the fusogenic lipid 1,2-dioleoyl-sn-3-phosphoethanolamine (DOPE) in combination with DOTAP or DDA were the most efficient at inducing antigen expression. Therefore, DOTAP and DDA formulations were selected for further in vivo studies and were compared to benchmark ionizable LNPs (iLNPs). Biodistribution studies revealed that DDA-cLNPs remained longer at the injection site compared to DOTAP-cLNPs and iLNPs when administered intramuscularly in mice. Both the cLNP formulations and the iLNPs induced strong humoral and cellular-mediated immune responses in mice that were not significantly different at a 1.5 mu g SAM dose. In summary, cLNPs based on DOTAP and DDA are an efficient alternative to iLNPs to deliver SAM vaccines.
Cellular uptake; Immunogenicity; In vitro potency; Lipid nanoparticles; Microfluidics; Pharmacokinetics; Self-amplifying RNA;
Settore CHIM/09 - Farmaceutico Tecnologico Applicativo
10-set-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S016836592030362X-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Lou_etal_JCR_2020_Delivery_of_self_amplifying_mRNA_vaccines_by_cationic_lipid_nanoparticles.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/960026
Citazioni
  • ???jsp.display-item.citation.pmc??? 62
  • Scopus 118
  • ???jsp.display-item.citation.isi??? 114
social impact