We developed a new versatile strategy that allows the detection of several classes of RNases (i.e., targeting ss- or ds-RNA, DNA/RNA hetero-hybrid or junctions) with higher sensitivity than existing assays. Our two-step approach consists of a DNA-RNA-DNA chimeric Hairpin Probe (cHP) conjugated to magnetic microparticles and containing a DNAzyme sequence in its terminal region, and molecular beacons for fluorescence signal generation. In the first step, the digestion of the RNA portion of the cHP sequences in presence of RNases leads to the release of multiple copies of the DNAzyme in solution. Then, after magnetic washing, each DNAzyme molecule elicits the catalytic cleavage of numerous molecular beacons, providing a strong amplification of the overall sensitivity of the assay. We successfully applied our approach to detect very low concentrations of RNase A, E. coli RNase I, and RNase H. Furthermore, we analyzed the effect of two antibiotics (penicillin and streptomycin) on RNase H activity, demonstrating the applicability of our strategy for the screening of inhibitors. Finally, we exploited our system to detect RNase activity directly in crude biological samples (i.e., blood and saliva) and in cell culture medium, highlighting its suitability as cheap and sensitive tool for the detection of RNase levels.

A hybrid chimeric system for versatile and ultra-sensitive RNase detection / S. Persano, G. Vecchio, P.P. Pompa. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 5:1(2015), pp. 9558.1-9558.5. [10.1038/srep09558]

A hybrid chimeric system for versatile and ultra-sensitive RNase detection

S. Persano
Primo
;
2015

Abstract

We developed a new versatile strategy that allows the detection of several classes of RNases (i.e., targeting ss- or ds-RNA, DNA/RNA hetero-hybrid or junctions) with higher sensitivity than existing assays. Our two-step approach consists of a DNA-RNA-DNA chimeric Hairpin Probe (cHP) conjugated to magnetic microparticles and containing a DNAzyme sequence in its terminal region, and molecular beacons for fluorescence signal generation. In the first step, the digestion of the RNA portion of the cHP sequences in presence of RNases leads to the release of multiple copies of the DNAzyme in solution. Then, after magnetic washing, each DNAzyme molecule elicits the catalytic cleavage of numerous molecular beacons, providing a strong amplification of the overall sensitivity of the assay. We successfully applied our approach to detect very low concentrations of RNase A, E. coli RNase I, and RNase H. Furthermore, we analyzed the effect of two antibiotics (penicillin and streptomycin) on RNase H activity, demonstrating the applicability of our strategy for the screening of inhibitors. Finally, we exploited our system to detect RNase activity directly in crude biological samples (i.e., blood and saliva) and in cell culture medium, highlighting its suitability as cheap and sensitive tool for the detection of RNase levels.
Settore CHIM/02 - Chimica Fisica
2015
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/958880
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact