Blind Deconvolution problem is a challenging task in several scientific imaging domains, such as Microscopy, Medicine and Astronomy. The Point Spread Function inducing the blur effect on the acquired image can be solely approximately known, or just a mathematical model may be available. Blind deconvolution aims to reconstruct the image when only the recorded data is available. In the last years, among the standard variational approaches, Deep Learning techniques have gained interest thanks to their impressive performances. The Deep Image Prior framework has been employed for solving this task, giving rise to the so-called neural blind deconvolution (NBD), where the unknown blur and image are estimated via two different neural networks. In this paper, we consider microscopy images, where the predominant noise is of Poisson type, hence signal-dependent: this leads to consider the generalized Kullback-Leibler as loss function and to couple it with regularization terms on both the blur operator and on the image. Furthermore, we propose to modify the standard NBD formulation problem, by including for the blur kernel an upper bound which depends on the optical instrument. A numerical solution is obtained by an alternating Proximal Gradient Descent-Ascent procedure, which results in the Double Deep Image Prior for Poisson noise algorithm. We evaluate the proposed strategy on both synthetic and real-world images, achieving promising results and proving that the correct choice of the loss and regularization functions strongly depends on the application at hand.

Neural blind deconvolution with Poisson data / A. Benfenati, A. Catozzi, V. Ruggiero. - In: INVERSE PROBLEMS. - ISSN 0266-5611. - 39:5(2023 May), pp. 054003.1-054003.30. [10.1088/1361-6420/acc2e0]

Neural blind deconvolution with Poisson data

A. Benfenati
Primo
;
2023

Abstract

Blind Deconvolution problem is a challenging task in several scientific imaging domains, such as Microscopy, Medicine and Astronomy. The Point Spread Function inducing the blur effect on the acquired image can be solely approximately known, or just a mathematical model may be available. Blind deconvolution aims to reconstruct the image when only the recorded data is available. In the last years, among the standard variational approaches, Deep Learning techniques have gained interest thanks to their impressive performances. The Deep Image Prior framework has been employed for solving this task, giving rise to the so-called neural blind deconvolution (NBD), where the unknown blur and image are estimated via two different neural networks. In this paper, we consider microscopy images, where the predominant noise is of Poisson type, hence signal-dependent: this leads to consider the generalized Kullback-Leibler as loss function and to couple it with regularization terms on both the blur operator and on the image. Furthermore, we propose to modify the standard NBD formulation problem, by including for the blur kernel an upper bound which depends on the optical instrument. A numerical solution is obtained by an alternating Proximal Gradient Descent-Ascent procedure, which results in the Double Deep Image Prior for Poisson noise algorithm. We evaluate the proposed strategy on both synthetic and real-world images, achieving promising results and proving that the correct choice of the loss and regularization functions strongly depends on the application at hand.
Settore MAT/08 - Analisi Numerica
mag-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
Benfenati_2023_Inverse_Problems_39_054003.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 10.8 MB
Formato Adobe PDF
10.8 MB Adobe PDF Visualizza/Apri
Benfenati_2023_Inverse_Problems_39_054003_compressed.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.94 MB
Formato Adobe PDF
3.94 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/957818
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact