Aminaphtone, a drug used in the treatment of chronic venous insufficiency (CVI), showed a remarkable role in the modulation of several vasoactive factors, like endothelin-1 and adhesion molecules. We analysed in vitro the effects of Aminaphtone on whole-genome gene expression and production of different inflammatory proteins. ECV-304 endothelial cells were stimulated with IL-1β 100 U/ml in the presence or absence of Aminaphtone 6 μg/ml. Gene expression profiles were compared at 1, 3, and 6 h after stimulation by microarray. Supernatants of ECV-304 cultures were analysed at 3, 6, 12, and 24 h by multiplex ELISA for production of several cytokine and chemokines. Microarrays showed a significant down-regulation at all times of a wide range of inflammatory genes. Aminaphtone appeared also able to modulate the regulation of immune response process (down-regulating cytokine biosynthesis, transcripts involved in lymphocyte differentiation and cell proliferation, and cytokine-cytokine receptor interaction) and to regulate genes engaged in homeostasis, secretion, body fluid levels, response to hypoxia, cell division, and cell-to-cell communication and signalling. Results were confirmed and extended analysing the secretome, which showed significant reduction of the release of 14 cytokines and chemokines. These effects are predicted to be mediated by interaction with different transcription factors. Aminaphtone was able to modulate the expression of inflammatory molecules relevant to the pathogenesis of several conditions in which the endothelial dysfunction is the main player and early event, like scleroderma, lung fibrosis, or atherosclerosis.

Gene expression profiling reveals novel protective effects of Aminaphtone on ECV304 endothelial cells / G. Salazar, C. Bellocchi, K. Todoerti, F. Saporiti, L. Piacentini, R. Scorza, G.I. Colombo. - In: EUROPEAN JOURNAL OF PHARMACOLOGY. - ISSN 0014-2999. - 782:(2016), pp. 59-69. [10.1016/j.ejphar.2016.04.018]

Gene expression profiling reveals novel protective effects of Aminaphtone on ECV304 endothelial cells

C. Bellocchi
Secondo
;
K. Todoerti;F. Saporiti;L. Piacentini;
2016

Abstract

Aminaphtone, a drug used in the treatment of chronic venous insufficiency (CVI), showed a remarkable role in the modulation of several vasoactive factors, like endothelin-1 and adhesion molecules. We analysed in vitro the effects of Aminaphtone on whole-genome gene expression and production of different inflammatory proteins. ECV-304 endothelial cells were stimulated with IL-1β 100 U/ml in the presence or absence of Aminaphtone 6 μg/ml. Gene expression profiles were compared at 1, 3, and 6 h after stimulation by microarray. Supernatants of ECV-304 cultures were analysed at 3, 6, 12, and 24 h by multiplex ELISA for production of several cytokine and chemokines. Microarrays showed a significant down-regulation at all times of a wide range of inflammatory genes. Aminaphtone appeared also able to modulate the regulation of immune response process (down-regulating cytokine biosynthesis, transcripts involved in lymphocyte differentiation and cell proliferation, and cytokine-cytokine receptor interaction) and to regulate genes engaged in homeostasis, secretion, body fluid levels, response to hypoxia, cell division, and cell-to-cell communication and signalling. Results were confirmed and extended analysing the secretome, which showed significant reduction of the release of 14 cytokines and chemokines. These effects are predicted to be mediated by interaction with different transcription factors. Aminaphtone was able to modulate the expression of inflammatory molecules relevant to the pathogenesis of several conditions in which the endothelial dysfunction is the main player and early event, like scleroderma, lung fibrosis, or atherosclerosis.
Cytokines; Endothelial cells; Endothelin-1; Gene expression profiling; Inflammation
Settore MED/09 - Medicina Interna
2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0014299916302321-main.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/957435
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 7
social impact