In the context of quantum technologies over continuous variables, Gaussian states and operations are typically regarded as freely available, as they are relatively easily accessible experimentally. In contrast, the generation of non-Gaussian states, as well as the implementation of non-Gaussian operations, pose significant challenges. This divide has motivated the introduction of resource theories of non-Gaussianity. As for any resource theory, it is of practical relevance to identify free conversion protocols between resources, namely, Gaussian conversion protocols between non-Gaussian states. Via systematic numerical investigations, we address the approximate conversion between experimentally relevant single-mode non-Gaussian states via arbitrary deterministic one-to-one mode Gaussian maps. First we show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit. Then we consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations. The numerical tools that we develop also allow one to devise conversions of trisqueezed into cubic-phase states beyond previously reported performances. Finally, we identify various other conversions which instead are not viable.

Deterministic Gaussian conversion protocols for non-Gaussian single-mode resources / O. Hahn, P. Holmvall, P. Stadler, G. Ferrini, A. Ferraro. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 105:6(2022), pp. 062446.1-062446.14. [10.1103/physreva.105.062446]

Deterministic Gaussian conversion protocols for non-Gaussian single-mode resources

A. Ferraro
Ultimo
2022

Abstract

In the context of quantum technologies over continuous variables, Gaussian states and operations are typically regarded as freely available, as they are relatively easily accessible experimentally. In contrast, the generation of non-Gaussian states, as well as the implementation of non-Gaussian operations, pose significant challenges. This divide has motivated the introduction of resource theories of non-Gaussianity. As for any resource theory, it is of practical relevance to identify free conversion protocols between resources, namely, Gaussian conversion protocols between non-Gaussian states. Via systematic numerical investigations, we address the approximate conversion between experimentally relevant single-mode non-Gaussian states via arbitrary deterministic one-to-one mode Gaussian maps. First we show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit. Then we consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations. The numerical tools that we develop also allow one to devise conversions of trisqueezed into cubic-phase states beyond previously reported performances. Finally, we identify various other conversions which instead are not viable.
Settore FIS/03 - Fisica della Materia
2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
PhysRevA.105.062446-3.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/957374
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact